[1] |
司雄元, 熊科胜, 徐慧敏, 等. 磺胺-磺胺二甲基嘧啶污染对小白菜生长和生理指标的影响及相关性分析[J]. 生态与农村环境学报, 2018, 34(6): 554-562.
SI X Y, XIONG K S, XU H M, et al. Effects of sulfonamide-sulfamethazine on growth and physiological indexes of brassica campestris and its correlation analysis[J]. Journal of Ecology and Rural Environment, 2018, 34(6): 554-562(in Chinese).
|
[2] |
宋豆豆, 李莉, 刘伟婷. 玉米秸秆改性生物炭对磺胺类抗生素的吸附特性[J]. 生态与农村环境学报, 2021, 37(11): 1473-1480.
SONG D D, LI L, LIU W T. Research of adsorption characteristics of sulf antibiotics on corn stover biochar[J]. Journal of Ecology and Rural Environment, 2021, 37(11): 1473-1480(in Chinese).
|
[3] |
唐亚鑫, 黄雯, 张建强, 等. Fe0/Fe3C羊粪生物炭复合材料的制备及其活化过一硫酸盐降解磺胺嘧啶[J]. 环境化学, 2022, 41(12): 1111-1125. doi: 10.7524/j.issn.0254-6108.2021081602
TANG Y X, HUANG W, ZHANG J Q, et al. Preparation of Fe0/Fe3C sheep manure biochar composites for activating peroxymonosulfate to degrade sulfadiazine[J]. Environmental Chemistry, 2022, 41(12): 1111-1125(in Chinese). doi: 10.7524/j.issn.0254-6108.2021081602
|
[4] |
蓝梅, 孙凤坤, 张会宁, 等. 电化学氧化去除水中的磺胺二甲基嘧啶研究[J]. 工业水处理, 2019, 39(2): 46-49.
LAN M, SUN F K, ZHANG H N, et al. Research on the electrochemical oxidation method for the removal of sulfamethazine from water[J]. Industrial Water Treatment, 2019, 39(2): 46-49(in Chinese).
|
[5] |
卢建, 邵子纯, 夏文君, 等. Fe0-Na2S2O8去除畜禽废水中磺胺二甲基嘧啶研究[J]. 水处理技术, 2019, 45(5): 42-46.
LU J, SHAO Z C, XIA W J, et al. Study on the removal of sulfamethazine in swine wastewater by Fe0-Na2S2O8 system[J]. Technology of Water Treatment, 2019, 45(5): 42-46(in Chinese).
|
[6] |
ZHAO Q, GUO W Q, LUO H C, et al. Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses[J]. Journal of Hazardous Materials, 2022, 423: 127248. doi: 10.1016/j.jhazmat.2021.127248
|
[7] |
CHEN J F, TONG T L, JIANG X S, et al. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders[J]. Environmental Pollution, 2020, 265: 115040. doi: 10.1016/j.envpol.2020.115040
|
[8] |
JIANG Y, RAN J B, MAO K, et al. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113464. doi: 10.1016/j.ecoenv.2022.113464
|
[9] |
邱述兴, 韩星, 张梅, 等. 异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势[J]. 工程科学学报, 2021, 43(4): 460-474.
QIU S X, HAN X, ZHANG M, et al. Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater[J]. Chinese Journal of Engineering, 2021, 43(4): 460-474(in Chinese).
|
[10] |
戴慧旺, 陈建新, 苗笑增, 等. 醇类对UV-Fenton体系羟基自由基淬灭效率的影响[J]. 中国环境科学, 2018, 38(1): 202-209.
DAI H W, CHEN J X, MIAO X Z, et al. Effect of alcohols on scavenging efficiencies to hydroxyl radical in UV-Fenton system[J]. China Environmental Science, 2018, 38(1): 202-209(in Chinese).
|
[11] |
李瑜辉, 谢武明, 吕文东, 等. 赤泥基零价铁类芬顿降解罗丹明B和磺胺嘧啶的催化性能[J]. 环境化学, 2022, 41(2): 707-718. doi: 10.7524/j.issn.0254-6108.2020100402
LI Y H, XIE W M, LYV W D, et al. The Fenton-like catalytic performance of zero valent iron based red mud for degradation of rhodamine B and sulfadiazine[J]. Environmental Chemistry, 2022, 41(2): 707-718(in Chinese). doi: 10.7524/j.issn.0254-6108.2020100402
|
[12] |
付融冰. 纳米零价铁催化过氧化氢强化修复4-氯硝基苯污染地下水的研究[J]. 环境科学, 2014, 35(4): 1351-1357.
FU R B. Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence Iron (nZVI) catalyzed hydrogen peroxide (H2O2)[J]. Environmental Science, 2014, 35(4): 1351-1357(in Chinese).
|
[13] |
薛权峰, 张有贤, 徐腾. 非均相类Fenton催化剂处理马铃薯淀粉废水的实验研究[J]. 现代化工, 2019, 39(4): 149-152.
XUE Q F, ZHANG Y X, XU T. Experimental study on treatment of potato starch wastewater by heterogeneous Fenton-like catalyst[J]. Modern Chemical Industry, 2019, 39(4): 149-152(in Chinese).
|
[14] |
张瑞敏, 李健生, 戚琳, 等. 负载型纳米零价铁对水中硝基苯的去除[J]. 化工环保, 2022, 42(6): 700-706.
ZHANG R M, LI J S, QI L, et al. Supported nanoscale zero-valent iron for removal of nitrobenzene from water[J]. Environmental Protection of Chemical Industry, 2022, 42(6): 700-706(in Chinese).
|
[15] |
曾淦宁, 武晓, 郑林, 等. 负载纳米零价铁铜藻基活性炭的制备及其去除水中Cr(Ⅵ)的研究[J]. 环境科学, 2015, 36(2): 530-536.
ZENG G N, WU X, ZHENG L, et al. Preparation of nano zero-valent iron/sargassum horneri based activated carbon for removal of Cr(Ⅵ) from aqueous solution[J]. Environmental Science, 2015, 36(2): 530-536(in Chinese).
|
[16] |
张永祥, 常杉, 李飞, 等. 稳定型纳米零价铁去除地下水中2, 4-二氯苯酚[J]. 环境科学, 2017, 38(6): 2385-2392.
ZHANG Y X, CHANG S, LI F, et al. Removal of 2, 4-dichlorophenol in underground water by stabilized nano zero-valent iron[J]. Environmental Science, 2017, 38(6): 2385-2392(in Chinese).
|
[17] |
邱心泓, 方战强. 修饰型纳米零价铁降解有机卤化物的研究[J]. 化学进展, 2010, 22(Z1): 291-297.
QIU X H, FANG Z Q. Degradation of halogenated organic compounds by modified nano zero-valent iron[J]. Progress in Chemistry, 2010, 22(Z1): 291-297(in Chinese).
|
[18] |
TAN L, LU S Y, FANG Z Q, et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B:Environmental, 2017, 200: 200-210. doi: 10.1016/j.apcatb.2016.07.005
|
[19] |
吕小凡. 非均相催化降解地下水中有机氯化合物的机理研究[D]. 北京: 中国地质大学(北京), 2020.
LV X F. Application of heterogeneous catalysis on the degradation of typical organochloride compounds [D]. Beijing: China University of Geosciences (Beijing), 2020(in Chinese).
|
[20] |
谢欣卓, 钟金魁, 李静, 等. Fe3O4-nZVI类Fenton法降解水中磺胺甲恶唑[J]. 中国环境科学, 2022, 42(7): 3103-3111.
XIE X Z, ZHONG J K, LI J, et al. Degradation of sulfamethoxazole in water by Fenton-like method using Fe3O4-nZVI[J]. China Environmental Science, 2022, 42(7): 3103-3111(in Chinese).
|
[21] |
郑博文, 钟金魁, 谢欣卓, 等. 四氧化三铁负载纳米零价铁类Fenton法去除水中对氯苯酚[J]. 兰州交通大学学报, 2022, 41(4): 103-110.
ZHENG B W, ZHONG J K, XIE X Z, et al. Removal of p-chlorophenol from water by Fe3O4-nZVI Fenton-like method[J]. Journal of Lanzhou Jiaotong University, 2022, 41(4): 103-110(in Chinese).
|
[22] |
钟金魁, 王新昊, 包想乐, 等. Fe3O4负载纳米零价铁类Fenton法去除水中2, 4-二氯苯酚[J]. 西北师范大学学报(自然科学版), 2022, 58(4): 79-86.
ZHONG J K, WANG X H, BAO X L, et al. Removal of 2, 4-dichlorophenol from water by Fe3O4-loaded nano-zero-valent-iron Fenton-like method[J]. Journal of Northwest Normal University (Natural Science), 2022, 58(4): 79-86(in Chinese).
|
[23] |
LI Y J, ZHANG B J, LIU X L, et al. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: A case study of sulfamethoxazole[J]. Journal of Hazardous Materials, 2018, 353: 26-34. doi: 10.1016/j.jhazmat.2018.02.034
|
[24] |
任美, 程建华, 唐翔宇, 等. 生物质炭施用及老化对石灰性紫色土中磺胺类抗生素迁移特征的影响[J]. 土壤, 2021, 53(3): 563-570.
REN M, CHENG J H, TANG X Y, et al. Effects of biochar application and ageing on the transport of sulfonamides in calcareous purple soil[J]. Soils, 2021, 53(3): 563-570(in Chinese).
|
[25] |
戴昕, 高尚, 刘军, 等. 类Fenton氧化法用于填埋场垃圾渗滤液的深度处理[J]. 工业水处理, 2022, 42(8): 108-112.
DAI X, GAO S, LIU J, et al. Application of Fenton-like oxidation for advanced treatment of landfill leachate[J]. Industrial Water Treatment, 2022, 42(8): 108-112(in Chinese).
|
[26] |
HU X L, BAO J Y, CHEN D W, et al. Accelerating the Fe(III)/Fe(II) cycle via enhanced electronic effect in NH2-MIL-88B(Fe)/TPB-DMTP-COF composite for boosting photo-Fenton degradation of sulfamerazine[J]. Journal of Colloid and Interface Science, 2022, 624: 121-136. doi: 10.1016/j.jcis.2022.05.142
|
[27] |
杨鑫宇, 符爱东, 武向前, 等. 改性生物质炭负载铁类Fenton体系降解亚甲基蓝研究[J]. 工业水处理, 2023, 43(4): 98-104.
YANG X Y, FU A D, WU X Q, et al. Study on degradation of methylene blue by iron supported on modified biomass carbon Fenton-like system[J]. Industrial Water Treatment, 2023, 43(4): 98-104(in Chinese).
|
[28] |
张立东, 霍思月, 李杰, 等. 异相类Fenton催化剂CuFeO2的制备及其对水中氧氟沙星的降解性能[J]. 环境工程学报, 2022, 16(7): 2144-2155.
ZHANG L D, HUO S Y, LI J, et al. Preparation of CuFeO2 as heterogeneous Fenton-like catalyst and its degradation performance on ofloxacin in the water[J]. Chinese Journal of Environmental Engineering, 2022, 16(7): 2144-2155(in Chinese).
|
[29] |
李任超, 查双兴, 金晓英, 等. 纳米铁系金属制剂用于类Fenton氧化降解2, 4-二氯苯酚[J]. 福建师范大学学报(自然科学版), 2013, 29(4): 57-64.
LI R C, ZHA S X, JIN X Y, et al. Fenton-like oxidation of 2, 4-DCP in aqueous solution using iron-based nanoparticles[J]. Journal of Fujian Normal University ( Natural Science Edition), 2013, 29(4): 57-64(in Chinese).
|
[30] |
王兰, 祁乙浩. 改性蛭石负载纳米Fe3O4增强类Fenton降解水中苯酚[J]. 安全与环境学报,2023, 23(8): 2866-2879.
WANG L, QI Y H. Modified vermiculite supported nano-Fe3O4 enhanced Fenton-like degradation of phenol in water[J]. Journal of Safety and Environment, 2023, 23(8): 2866-2879(in Chinese).
|
[31] |
SUN X K, QIN Y X, ZHOU W. Degradation of amoxicillin from water by ultrasound-zero-valent iron activated sodium persulfate[J]. Separation and Purification Technology, 2021, 275: 119080. doi: 10.1016/j.seppur.2021.119080
|
[32] |
GENG X X, LV S Y, YANG J, et al. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics[J]. Journal of Environmental Management, 2020, 280: 111749.
|
[33] |
陈茂, 张鑫, 谢伟, 等. 生物炭/凹凸棒土的制备及对磺胺嘧啶的吸附[J]. 化工进展, 2022, 41(5): 2623-2635.
CHEN M, ZHANG X, XIE W, et al. Preparation of biocarbon/attapulgite and sulfadiazine adsorption[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2623-2635(in Chinese).
|
[34] |
BATISTA A P S, PIRES F C C, TEIXEIRA A C S C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: Relevance of concentration and heterocyclic aromatic groups to degradation kinetics[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2014, 286: 40-46.
|
[35] |
WANG J L, ZHOU A X, ZHANG Y L, et al. Research on the adsorption and migration of sulfa antibiotics in underground environment[J]. Environmental Earth Sciences, 2016, 75(18): 1252. doi: 10.1007/s12665-016-6056-9
|