[1] |
LOPEZ-VELAZQUEZ M A, SANTES V, BALMASEDA J, et al. Pyrolysis of orange waste: A thermo-kinetic study[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99: 170-177. doi: 10.1016/j.jaap.2012.09.016
|
[2] |
CHEN J B, FAN X T, JIANG B, et al. Pyrolysis of oil-plant wastes in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and products characterization[J]. Bioresource Technology, 2015, 192: 592-602. doi: 10.1016/j.biortech.2015.05.108
|
[3] |
ERTAŞ M, HAKKı ALMA M. Pyrolysis of laurel (Laurus nobilis L. ) extraction residues in a fixed-bed reactor: Characterization of bio-oil and bio-char[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(1): 22-29. doi: 10.1016/j.jaap.2010.02.006
|
[4] |
郑赟. 基于组分分析的生物质热裂解动力学机理研究[D]. 杭州: 浙江大学, 2006.
ZHENG (B/Y). Mechanism research of biomass pyrolysis on component analysis and kinetic study[D]. Hangzhou: Zhejiang University, 2006 (in Chinese).
|
[5] |
JI L Q. An assessment of agricultural residue resources for liquid biofuel production in China[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 561-575. doi: 10.1016/j.rser.2015.01.011
|
[6] |
PANG S S. Advances in thermochemical conversion of woody biomass to energy, fuels and chemicals[J]. Biotechnology Advances, 2019, 37(4): 589-597. doi: 10.1016/j.biotechadv.2018.11.004
|
[7] |
AHMED A, ABU BAKAR M S, AZAD A K, et al. Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production[J]. Energy Conversion and Management, 2018, 176: 393-408. doi: 10.1016/j.enconman.2018.09.041
|
[8] |
BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. doi: 10.1016/j.biombioe.2011.01.048
|
[9] |
GRILC M, LIKOZAR B, LEVEC J. Hydrodeoxygenation and hydrocracking of solvolysed lignocellulosic biomass by oxide, reduced and sulphide form of NiMo, Ni, Mo and Pd catalysts[J]. Applied Catalysis B:Environmental, 2014, 150/151: 275-287. doi: 10.1016/j.apcatb.2013.12.030
|
[10] |
GRILC M, LIKOZAR B, LEVEC J. Hydrotreatment of solvolytically liquefied lignocellulosic biomass over NiMo/Al2O3 catalyst: Reaction mechanism, hydrodeoxygenation kinetics and mass transfer model based on FTIR[J]. Biomass and Bioenergy, 2014, 63: 300-312. doi: 10.1016/j.biombioe.2014.02.014
|
[11] |
CHEN D Y, ZHENG Y, ZHU X F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition[J]. Bioresource Technology, 2012, 107: 451-455. doi: 10.1016/j.biortech.2011.12.032
|
[12] |
ZWIETEN L V, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2010, 327(1): 235-246.
|
[13] |
安增莉, 侯艳伟, 蔡超, 等. 水稻秸秆生物炭对Pb(Ⅱ)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857.
AN Z L, HOU Y W, CAI C, et al. Lead(ⅱ) adsorption characteristics on different biochars derived from rice straw[J]. Environmental Chemistry, 2011, 30(11): 1851-1857 (in Chinese).
|
[14] |
孔露露, 周启星. 新制备生物炭的特性表征及其对石油烃污染土壤的吸附效果[J]. 环境工程学报, 2015, 9(5): 2462-2468.
KONG L L, ZHOU Q X. Characterization of new-prepared biochars and their adsorption effectiveness on petroleum hydrocarbon contaminated soil[J]. Chinese Journal of Environmental Engineering, 2015, 9(5): 2462-2468 (in Chinese).
|
[15] |
王萌萌, 周启星. 生物炭的土壤环境效应及其机制研究[J]. 环境化学, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008
WANG M M, ZHOU Q X. Environmental effects and their mechanisms of biochar applied to soils[J]. Environmental Chemistry, 2013, 32(5): 768-780 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.05.008
|
[16] |
KHAWAM A, FLANAGAN D R. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics[J]. The Journal of Physical Chemistry. B, 2005, 109(20): 10073-10080. doi: 10.1021/jp050589u
|
[17] |
VYAZOVKIN S, WIGHT C A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data[J]. Thermochimica Acta, 1999, 340/341: 53-68. doi: 10.1016/S0040-6031(99)00253-1
|
[18] |
VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19.
|
[19] |
WU W X, MEI Y F, ZHANG L, et al. Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste[J]. Fuel, 2015, 156: 71-80. doi: 10.1016/j.fuel.2015.04.016
|
[20] |
CEYLAN S, TOPÇU Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis[J]. Bioresource Technology, 2014, 156: 182-188. doi: 10.1016/j.biortech.2014.01.040
|
[21] |
马秋娜, 姬爱民, 李海英. 基于分布式活化能模型的污泥热解特性研究[J]. 节能, 2017, 36(9): 10-13. doi: 10.3969/j.issn.1004-7948.2017.09.003
MA Q N, JI A M, LI H Y. Study of sludge pyrolysis characteristics based on the distributed activation energy model[J]. Energy Conservation, 2017, 36(9): 10-13 (in Chinese). doi: 10.3969/j.issn.1004-7948.2017.09.003
|
[22] |
MA L Q, SYED-HASSAN S S A, TONG Y X, et al. Interactions of cellulose- and lignin-derived radicals during pyrolysis: An in situ Electron Paramagnetic Resonance (EPR) study[J]. Fuel Processing Technology, 2023, 239: 107536. doi: 10.1016/j.fuproc.2022.107536
|
[23] |
TAO W M, YANG X W, LI Y, et al. Components and persistent free radicals in the volatiles during pyrolysis of lignocellulose biomass[J]. Environmental Science & Technology, 2020, 54(20): 13274-13281.
|
[24] |
MISHRA R K, MOHANTY K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis[J]. Bioresource Technology, 2018, 251: 63-74. doi: 10.1016/j.biortech.2017.12.029
|
[25] |
CHANDRASEKARAN A, RAMACHANDRAN S, SUBBIAH S. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis[J]. Bioresource Technology, 2017, 233: 413-422. doi: 10.1016/j.biortech.2017.02.119
|
[26] |
SAMUELSSON L N, BABLER M U, MORIANA R. A single model-free rate expression describing both non-isothermal and isothermal pyrolysis of Norway Spruce[J]. Fuel, 2015, 161: 59-67. doi: 10.1016/j.fuel.2015.08.019
|
[27] |
DAMARTZIS T, VAMVUKA D, SFAKIOTAKIS S, et al. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA)[J]. Bioresource Technology, 2011, 102(10): 6230-6238. doi: 10.1016/j.biortech.2011.02.060
|
[28] |
ALSULAMI R A, EL-SAYED S A, E LTAHER M A, et al. Thermal decomposition characterization and kinetic parameters estimation for date palm wastes and their blends using TGA[J]. Fuel, 2023, 334(P1).
|
[29] |
TAO W M, DUAN W Y, LIU C B, et al. Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics[J]. The Science of the Total Environment, 2020, 715: 136575. doi: 10.1016/j.scitotenv.2020.136575
|
[30] |
ÖZSIN G, PÜTÜN A E. Co-pyrolytic behaviors of biomass and polystyrene: Kinetics, thermodynamics and evolved gas analysis[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 428-437. doi: 10.1007/s11814-017-0308-6
|
[31] |
MISHRA A, KUMARI U, TURLAPATI V Y, et al. Extensive thermogravimetric and thermo-kinetic study of waste motor oil based on iso-conversional methods[J]. Energy Conversion and Management, 2020, 221: 113194. doi: 10.1016/j.enconman.2020.113194
|
[32] |
TABAL A, BARAKAT A, ABOULKAS A, et al. Pyrolysis of ficus nitida wood: Determination of kinetic and thermodynamic parameters[J]. Fuel, 2021, 283: 119253. doi: 10.1016/j.fuel.2020.119253
|
[33] |
SONG F H, LI T T, ZHANG J, et al. Novel insights into the kinetics, evolved gases, and mechanisms for biomass (sugar cane residue) pyrolysis[J]. Environmental Science & Technology, 2019, 53(22): 13495-13505.
|
[34] |
RESHAD A S, TIWARI P, GOUD V V. Thermal degradation kinetic study of rubber seed oil and its methyl esters under inert atmosphere[J]. Energy & Fuels, 2017, 31(9): 9642-9651.
|
[35] |
TAO W M, ZHANG P, YANG X W, et al. An integrated study on the pyrolysis mecanism of peanut shell based on the kinetic analysis and solid/gas characterization[J]. Bioresource Technology, 2021, 329: 124860. doi: 10.1016/j.biortech.2021.124860
|
[36] |
KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.
|
[37] |
GUNASEKARA A S, SIMPSON M I, XING B S. Identification and characterization of sorption domains in soil organic matter using strucuturally modified humic acids[J]. Environmental Science & Technology, 2003, 37(5): 852-858.
|
[38] |
杨芳. 生物质热解过程中持久性自由基的产生过程及机理[D]. 昆明: 昆明理工大学, 2016.
YANG F. Environmentally persistent free radical generation and mechanism during the pyrolysis of biomasses[D]. Kunming: Kunming University of Science and Technology, 2016 (in Chinese).
|
[39] |
DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1): 521-528. doi: 10.1016/j.proci.2006.07.172
|
[40] |
DUAN S Y, ZHANG M H, SUN Y Q, et al. Mechanism of PM2.5-induced human bronchial epithelial cell toxicity in central China[J]. Journal of Hazardous Materials, 2020, 396: 122747. doi: 10.1016/j.jhazmat.2020.122747
|
[41] |
TAO W M, ZHANG P, LI H, et al. Generation mechanism of persistent free radicals in lignocellulose-derived biochar: Roles of reducible carbonyls[J]. Environmental Science & Technology, 2022, 56(15): 10638-10645.
|
[42] |
KHACHATRYAN L, BAREKATI-GOUDARZI M, ASATRYAN R, et al. Metal-free biomass-derived environmentally persistent free radicals (bio-EPFRs) from lignin pyrolysis[J]. ACS Omega, 2022, 7(34): 30241-30249. doi: 10.1021/acsomega.2c03381
|