[1] |
SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8(1): 14873. doi: 10.1038/ncomms14873
|
[2] |
吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53(2): 277-291.
WU Y D, LI F B, LIU T X. Mechanism of extracellular electron transfer among microbe—humus—mineral in soil: A review[J]. Acta Pedologica Sinica, 2016, 53(2): 277-291(in Chinese).
|
[3] |
田晓春. 微生物电化学技术研究希瓦氏菌的胞外电子传递机制[D]. 厦门: 厦门大学, 2017.
TIAN X C. Research on mechanisms of extracellular electron transfer for Shewanella strains using microbial electrochemical technologies[D]. Xiamen: Xiamen University, 2017(in Chinese).
|
[4] |
史涵, 王亚楠, 王清照, 等. 典型氢氧化细菌固碳特性种间差异及胞外有机物对固碳过程影响[J]. 环境科学学报, 2022, 42(11): 455-463.
SHI H, WANG Y N, WANG Q Z, et al. Interspecific differences of carbon fixation characteristics of typical hydrogenoxidizing bacteria and effects of extracellular organic compounds on carbon fixation process[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 455-463(in Chinese).
|
[5] |
ROTARU AE, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415.
|
[6] |
王加龙, 刘驰, 雷丽, 等. 非共生固氮菌及其固氮作用[J]. 微生物学报, 2022, 62(8): 2861-2878.
WANG J L, LIU C, LEI L, et al. Asymbiotic nitrogen-fixing bacteria and their nitrogen fixation potential[J]. Acta Microbiologica Sinica, 2022, 62(8): 2861-2878(in Chinese).
|
[7] |
MYERS C, NEALSON K. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319
|
[8] |
LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480. doi: 10.1128/aem.54.6.1472-1480.1988
|
[9] |
林霄涵, 杨帆, 赵峰. 微生物的胞外电子传递界面[J]. 环境化学, 2021, 40(11): 3283-3296. doi: 10.7524/j.issn.0254-6108.2021033106
LIN X H, YANG F, ZHAO F. The interface of microbial extracellular electron transfer[J]. Environmental Chemistry, 2021, 40(11): 3283-3296(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033106
|
[10] |
COURSOLLE D, GRALNICK J A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1[J]. Molecular Microbiology, 2010, 77(4): 995-1008. doi: 10.1111/j.1365-2958.2010.07266.x
|
[11] |
LEANG C, COPPI M V, LOVLEY D R. OmcB, a c-type polyheme cytochrome, involved in Fe(Ⅲ) reduction in Geobacter sulfurreducens[J]. Journal of Bacteriology, 2003, 185(7): 2096-2103. doi: 10.1128/JB.185.7.2096-2103.2003
|
[12] |
MEHTA T, COPPI M V, CHILDERS S E, et al. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(IV) oxide reduction in Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2005, 71(12): 8634-8641. doi: 10.1128/AEM.71.12.8634-8641.2005
|
[13] |
WHITE G F, SHI Z, SHI L, et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ) minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6346-6351.
|
[14] |
REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. doi: 10.1038/nature03661
|
[15] |
GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358-11363.
|
[16] |
GRALNICK J A, NEWMAN D K. Extracellular respiration[J]. Molecular Microbiology, 2007, 65(1): 1-11. doi: 10.1111/j.1365-2958.2007.05778.x
|
[17] |
张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 2021, 30(1): 213-222.
ZHANG Y L, CHEN X L, WU Y D. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications[J]. Ecology and Environmental Sciences, 2021, 30(1): 213-222(in Chinese).
|
[18] |
QIAO J T, LI X M, LI F B, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042.
|
[19] |
ZHANG C F, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology, 2012, 46(12): 6575-6583.
|
[20] |
WU Y, GUO J, HAN Y J, et al. Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline[J]. Chemosphere, 2018, 200: 373-379. doi: 10.1016/j.chemosphere.2018.02.110
|
[21] |
焦新亭, 李晓东, 刘国文, 等. 碳纳米管对亚甲基蓝的吸附性能研究[J]. 安全与环境学报, 2007, 7(3): 44-47. doi: 10.3969/j.issn.1009-6094.2007.03.011
JIAO X T, LI X D, LIU G W, et al. Study on adsorption of methylene blue by carbon nanotubes[J]. Journal of Safety and Environment, 2007, 7(3): 44-47 (in Chinese). doi: 10.3969/j.issn.1009-6094.2007.03.011
|
[22] |
王昕, 张春丽, 任广军, 等. 碳纳米管吸附染料甲基橙的性能研究[J]. 当代化工, 2008, 37(4): 375-377,381.
WANG X, ZHANG C L, REN G J, et al. Study on the adsorption of methyl orange from aqueous solution by carbon nanotubes[J]. Contemporary Chemical Industry, 2008, 37(4): 375-377,381(in Chinese).
|
[23] |
柳广飞, 朱佳琪, 于华莉, 等. 电子穿梭体介导微生物还原铁氧化物的研究进展[J]. 地球科学, 2018, 43(增刊1): 157-170.
LIU G F, ZHU J Q, YU H L, et al. Review on electron-shuttle-mediated microbial reduction of iron oxides minerals[J]. Earth Science, 2018, 43(Sup 1): 157-170(in Chinese).
|
[24] |
崔恒钊, 王育来, 邹丽敏, 等. 河岸带土壤溶解有机质垂直分布及其影响因素研究[J]. 环境科学与技术, 2015, 38(6): 8-13.
CUI H Z, WANG Y L, ZOU L M, et al. Vertical distribution and impact factors of soil dissolved organic matter in riparian zones[J]. Environmental Science & Technology, 2015, 38(6): 8-13(in Chinese).
|
[25] |
PETTIT R E. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health[J]. CTI Research, 2004, 10: 1-7.
|
[26] |
LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0
|
[27] |
李东阳, 杨天学, 吴明红, 等. 腐殖酸强化六氯苯厌氧降解规律及其中间产物[J]. 环境科学研究, 2016, 29(6): 870-876.
LI D Y, YANG T X, WU M H, et al. Anaerobic degradation regulation of hexachlorobenzene and degradation products enhanced by humic acid[J]. Research of Environmental Sciences, 2016, 29(6): 870-876(in Chinese).
|
[28] |
刘思佳, 何小松, 张慧, 等. 生活垃圾不同填埋阶段的富里酸对五氯苯酚的降解[J]. 环境科学, 2018, 39(12): 5699-5707.
LIU S J, HE X S, ZHANG H, et al. Degradation of pentachlorophenol by fulvic acid in a municipal solid waste landfill[J]. Environmental Science, 2018, 39(12): 5699-5707(in Chinese).
|
[29] |
ZHANG D D, ZHANG N, YU X W, et al. Effect of humins from different sediments on microbial degradation of 2, 2’, 4, 4’, 5, 5’-hexachlorobiphenyl (PCB153), and their polyphasic characterization[J]. RSC Advances, 2017, 7(12): 6849-6855. doi: 10.1039/C6RA25934K
|
[30] |
ZHANG C F, ZHANG D D, XIAO Z X, et al. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol[J]. Chemosphere, 2015, 131: 110-116. doi: 10.1016/j.chemosphere.2015.02.043
|
[31] |
CERVANTES F J, VU-THI-THU L, LETTINGA G, et al. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge[J]. Applied Microbiology and Biotechnology, 2004, 64(5): 702-711. doi: 10.1007/s00253-004-1564-z
|
[32] |
GU B H, YAN H, ZHOU P, et al. Natural humics impact uranium bioreduction and oxidation[J]. Environmental Science & Technology, 2005, 39(14): 5268-5275.
|
[33] |
WU C Y, ZHUANG L, ZHOU S G, et al. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2, 4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5[J]. Microbial Biotechnology, 2013, 6(2): 141-149. doi: 10.1111/1751-7915.12003
|
[34] |
SATHISHKUMAR K, LI Y, SANGANYADO E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395: 125077. doi: 10.1016/j.cej.2020.125077
|
[35] |
KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344.
|
[36] |
YU L P, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5: 16221. doi: 10.1038/srep16221
|
[37] |
CHEN Z, WANG Y P, XIA D, et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J]. Journal of Hazardous Materials, 2016, 311: 20-29. doi: 10.1016/j.jhazmat.2016.02.069
|
[38] |
WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite[J]. Environmental Science & Technology, 2017, 51(17): 9709-9717.
|
[39] |
PAN T T, CHEN B L. Facile fabrication of Shewanella@graphene core-shell material and its enhanced performance in nitrobenzene reduction[J]. Science of the Total Environment, 2019, 658: 324-332. doi: 10.1016/j.scitotenv.2018.12.028
|
[40] |
LI H, CAO W, WANG W B, et al. Carbon nanotubes mediating nano α-FeOOH reduction by Shewanella putrefaciens CN32 to enhance tetrabromobisphenol A removal[J]. Science of the Total Environment, 2021, 777: 146183. doi: 10.1016/j.scitotenv.2021.146183
|
[41] |
SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989.
|
[42] |
NURMI J T, TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles[J]. Environmental Science & Technology, 2002, 36(4): 617-624.
|
[43] |
YANG P J, JIANG T, CONG Z Y, et al. Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: The role of quinone and nonquinone moieties[J]. Environmental Science & Technology, 2022, 56(10): 6744-6753.
|
[44] |
RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850.
|
[45] |
RAU J, KNACKMUSS H J, STOLZ A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria[J]. Environmental Science & Technology, 2002, 36(7): 1497-1504.
|
[46] |
GOLDBERG E D. Black carbon in the environment: properties and distribution[M]. New York: J. Wiley, 1985.
|
[47] |
LEHMANN J, RONDON M. Bio-char soil management on highly weathered soils in the humid tropics[J]. Biological Approaches to Sustainable Soil Systems, 2006, 113(517): e530.
|
[48] |
UPHOFF N T, Biological approaches to sustainable soil systems[M]. Boca Raton: CRC/Taylor & Francis, 2006.
|
[49] |
LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. Second Edition.
|
[50] |
吕鹏, 李莲芳, 黄晓雅. 改性生物炭修复砷镉复合污染土壤研究进展[J]. 环境科学,2023, 44(7): 4077-4090.
LYU P, LI L F, HUANG X Y. Modified Biochar for Remediation of Soil Contaminated with Arsenic and Cadmium: A Review[J]. Environmental Science,2023, 44(7): 4077-4090(in Chinese).
|
[51] |
LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195
|
[52] |
KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611.
|
[53] |
TANG Y, ALAM M S, KONHAUSER K O, et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. Journal of Cleaner Production, 2019, 209: 927-936. doi: 10.1016/j.jclepro.2018.10.268
|
[54] |
CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143.
|
[55] |
SUN T R, LEVIN B D A, SCHMIDT M P, et al. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon[J]. Environmental Science & Technology, 2018, 52(15): 8538-8547.
|
[56] |
JIANG D Q, LI B K. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes[J]. Biochemical Engineering Journal, 2009, 47(1/2/3): 31-37.
|
[57] |
YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103
|
[58] |
XU W Q, PIGNATELLO J J, MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13): 7129-7136.
|
[59] |
LU Y, XIE Q Q, TANG L, et al. The reduction of nitrobenzene by extracellular electron transfer facilitated by Fe-bearing biochar derived from sewage sludge[J]. Journal of Hazardous Materials, 2021, 403: 123682. doi: 10.1016/j.jhazmat.2020.123682
|
[60] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896
|
[61] |
BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. doi: 10.1021/nl0731872
|
[62] |
LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996
|
[63] |
JIANG Y F, YANG L J, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5(11): 6707-6712. doi: 10.1021/acscatal.5b01835
|
[64] |
LIU G F, DONG B, ZHOU J T, et al. Enhanced bioreduction of nitrobenzene by reduced graphene oxide materials: Effects of surface modification and coexisting soluble electron shuttles[J]. Environmental Science and Pollution Research, 2017, 24(34): 26874-26880. doi: 10.1007/s11356-017-0673-z
|
[65] |
TORAL-SÁNCHEZ E, RANGEL-MENDEZ J R, ASCACIO VALDÉS J A, et al. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions[J]. Bioresource Technology, 2017, 223: 269-276. doi: 10.1016/j.biortech.2016.10.062
|
[66] |
ZHANG P, ZHOU P, PENG J L, et al. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator[J]. Water Research, 2022, 219: 118626. doi: 10.1016/j.watres.2022.118626
|
[67] |
TIAN S Q, WANG L, LIU Y L, et al. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in situ activation of biochar[J]. Environmental Science & Technology, 2019, 53(9): 5282-5291.
|
[68] |
JIANG M, FENG L Y, ZHENG X, et al. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition[J]. Water Research, 2020, 180: 115916. doi: 10.1016/j.watres.2020.115916
|
[69] |
IGARASHI K, MIYAKO E, KATO S. Direct interspecies electron transfer mediated by graphene oxide-based materials[J]. Frontiers in Microbiology, 2020, 10: 3068. doi: 10.3389/fmicb.2019.03068
|
[70] |
邹龙. 基于纳米结构阳极的腐败希瓦氏菌胞外电子传递机理研究[D]. 重庆: 西南大学, 2016.
ZOU L. Extracellular electron transfer mechanism of Shewanella putrefaciens on nanostructured anodes[D]. Chongqing: Southwest University, 2016(in Chinese).
|
[71] |
SHI L J, LI X, TUO Y X, et al. Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs[J]. Catalysis Today, 2016, 276: 121-127. doi: 10.1016/j.cattod.2015.12.024
|
[72] |
LU Y, ZHANG S J, LIU Q, et al. Nitrobenzene reduction promoted by the integration of carbon nanotubes and Geobacter sulfurreducens[J]. Environmental Pollution, 2023, 325: 121444. doi: 10.1016/j.envpol.2023.121444
|
[73] |
YAN F F, HE Y R, WU C, et al. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2014, 1(1): 128-132.
|
[74] |
王贺飞. 生物炭强化希瓦氏菌还原转化硝基苯类化合物的机制[D]. 杭州: 浙江大学, 2020.
WANG H F. Mechanisms for pyrogenic carbon-enhanced bioreduction of nitroaromatic compounds by Shewanella[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
|
[75] |
SHI Y F, DAI Y C, LIU Z W, et al. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Frontiers of Environmental Science & Engineering, 2020, 14(6): 1-10.
|
[76] |
YUAN Y, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154
|
[77] |
WANG G J, XING Y, LIU G H, et al. Poorly conductive biochar boosting extracellular electron transfer for efficient volatile fatty acids oxidation via redox-mediated mechanism[J]. Science of the Total Environment, 2022, 809: 151113. doi: 10.1016/j.scitotenv.2021.151113
|
[78] |
李爱琴, 唐宏建, 王阳峰. 环境中铬污染的生态效应及其防治[J]. 中国环境管理干部学院学报, 2006, 16(1): 74-77. doi: 10.13358/j.issn.1008-813x.2006.01.023
LI A Q, TANG H J, WANG Y F. Ecological effect and prevention of chromium pollution in the environment[J]. Journal of Environmental Management College of China, 2006, 16(1): 74-77(in Chinese). doi: 10.13358/j.issn.1008-813x.2006.01.023
|
[79] |
GU B H, CHEN J. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3575-3582. doi: 10.1016/S0016-7037(03)00162-5
|
[80] |
ZHOU Y, DUAN J T, JIANG J, et al. Effect of TOC concentration of humic substances as an electron shuttle on redox functional groups stimulating microbial Cr(VI) reduction[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 2600. doi: 10.3390/ijerph19052600
|
[81] |
YU C, ZHU X X, MOHAMED A, et al. Enhanced Cr(VI) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer[J]. Journal of Hazardous Materials, 2023, 442: 129927. doi: 10.1016/j.jhazmat.2022.129927
|
[82] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
|
[83] |
于云江, 王菲菲, 房吉敦, 等. 环境砷污染对人体健康影响的研究进展[J]. 环境与健康杂志, 2007, 24(3): 181-183. doi: 10.3969/j.issn.1001-5914.2007.03.026
YU Y J, WANG F F, FANG J D, et al. Advance in research on environmental arsenic pollution to human health[J]. Journal of Environment and Health, 2007, 24(3): 181-183(in Chinese). doi: 10.3969/j.issn.1001-5914.2007.03.026
|
[84] |
JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645.
|
[85] |
ZHANG W X, YANG Q, LUO Q H, et al. Laccase-Carbon nanotube nanocomposites for enhancing dyes removal[J]. Journal of Cleaner Production, 2020, 242: 118425. doi: 10.1016/j.jclepro.2019.118425
|
[86] |
VAN DER ZEE F P, BOUWMAN R H M, STRIK D P B T B, et al. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors[J]. Biotechnology and Bioengineering, 2001, 75(6): 691-701. doi: 10.1002/bit.10073
|
[87] |
COLUNGA A, RANGEL-MENDEZ J R, CELIS L B, et al. Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions[J]. Bioresource Technology, 2015, 175: 309-314. doi: 10.1016/j.biortech.2014.10.101
|
[88] |
TAN W B, WANG L, YU H X, et al. Accelerated microbial reduction of azo dye by using biochar from iron-rich-biomass pyrolysis[J]. Materials, 2019, 12(7): 1079 doi: 10.3390/ma12071079
|
[89] |
MENEZES O, KOCAMAN K, WONG S, et al. Quinone moieties link the microbial respiration of natural organic matter to the chemical reduction of diverse nitroaromatic compounds[J]. Environmental Science & Technology, 2022, 56(13): 9387-9397.
|
[90] |
BHUSHAN B, HALASZ A, HAWARI J. Effect of iron(III), humic acids and anthraquinone-2, 6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2[J]. Journal of Applied Microbiology, 2006, 100(3): 555-563. doi: 10.1111/j.1365-2672.2005.02819.x
|
[91] |
王楠, 周宇齐, 姜子叶, 等. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
WANG N, ZHOU Y Q, JIANG Z Y, et al. Synergistically consecutive reduction and oxidation of per-and poly-halogenated organic pollutants[J]. Progress in Chemistry, 2022, 34(12): 2667-2685(in Chinese).
|