[1] BAI H T, HE W, CHAU J H C, et al. AIEgens for microbial detection and antimicrobial therapy[J]. Biomaterials, 2021, 268: 120598. doi: 10.1016/j.biomaterials.2020.120598
[2] PAPAGRIGORAKIS M J, YAPIJAKIS C, SYNODINOS P N, et al. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens[J]. International Journal of Infectious Diseases, 2006, 10(3): 206-214. doi: 10.1016/j.ijid.2005.09.001
[3] CUNHA B A. The cause of the plague of Athens: Plague, typhoid, typhus, smallpox, or measles?[J]. Infectious Disease Clinics of North America, 2004, 18(1): 29-43. doi: 10.1016/S0891-5520(03)00100-4
[4] BERCHE P. Life and death of smallpox[J]. La Presse Médicale, 2022, 51(3): 104117.
[5] WAGNER D M, KLUNK J, HARBECK M, et al. Yersinia pestis and the plague of Justinian 541-543 AD: A genomic analysis[J]. The Lancet Infectious Diseases, 2014, 14(4): 319-326. doi: 10.1016/S1473-3099(13)70323-2
[6] DeWITTE S N. Age patterns of mortality during the Black Death in London, A. D. 1349-1350[J]. Journal of Archaeological Science, 2010, 37(12): 3394-3400. doi: 10.1016/j.jas.2010.08.006
[7] CHAKRABORTY C. Therapeutics development for Ebola virus disease: A recent scenario[J]. Current Opinion in Pharmacology, 2021, 60: 208-215. doi: 10.1016/j.coph.2021.07.020
[8] OHIMAIN E I, SILAS-OLU D. The 2013-2016 Ebola virus disease outbreak in West Africa[J]. Current Opinion in Pharmacology, 2021, 60: 360-365. doi: 10.1016/j.coph.2021.08.002
[9] MALVY D, McELROY A K, de CLERCK H, et al. Ebola virus disease[J]. Lancet, 2019, 393(10174): 936-948. doi: 10.1016/S0140-6736(18)33132-5
[10] PEIRIS J, LAI S, POON L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome[J]. The Lancet, 2003, 361(9366): 1319-1325. doi: 10.1016/S0140-6736(03)13077-2
[11] PEIRIS J, CHU C, CHENG V, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study[J]. The Lancet, 2003, 361(9371): 1767-1772. doi: 10.1016/S0140-6736(03)13412-5
[12] DINOI A, FELTRACCO M, CHIRIZZI D, et al. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission[J]. Science of the Total Environment, 2022, 809: 151137. doi: 10.1016/j.scitotenv.2021.151137
[13] LI J Y, YOU Z, WANG Q, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future[J]. Microbes and Infection, 2020, 22(2): 80-85. doi: 10.1016/j.micinf.2020.02.002
[14] LA A, ZHANG Q, CICEK N, et al. Current understanding of the airborne transmission of important viral animal pathogens in spreading disease[J]. Biosystems Engineering, 2022, 224: 92-117. doi: 10.1016/j.biosystemseng.2022.09.013
[15] SONG L, ZHOU J F, WANG C, et al. Airborne pathogenic microorganisms and air cleaning technology development: A review[J]. Journal of Hazardous Materials, 2022, 424: 127429. doi: 10.1016/j.jhazmat.2021.127429
[16] 库婷婷, 刘倩, 桑楠, 等. 几种典型呼吸道病毒的病原学特征及其检测方法[J]. 环境化学, 2020, 39(4): 841-851. doi: 10.7524/j.issn.0254-6108.2020030601 KU T T, LIU Q, SANG N, et al. Pathogenic characteristics and detection methods of several typical respiratory viruses[J]. Environmental Chemistry, 2020, 39(4): 841-851 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020030601
[17] 黄亚妮, 王玲, 曹梦西, 等. 新型冠状病毒(SARS-CoV-2)的环境传播研究进展[J]. 环境化学, 2021, 40(7): 1945-1957. doi: 10.7524/j.issn.0254-6108.2021022703 HUANG Y N, WANG L, CAO M X, et al. A review on the environmental transmission of novel coronavirus(SARS-CoV-2)[J]. Environmental Chemistry, 2021, 40(7): 1945-1957 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022703
[18] MOON J, RYU B H. Transmission risks of respiratory infectious diseases in various confined spaces: A meta-analysis for future pandemics[J]. Environmental Research, 2021, 202: 111679. doi: 10.1016/j.envres.2021.111679
[19] ASLAN A, KARADUMAN E, DERUN E M, et al. Development and characterization of negative air ion emitting mica- and sericite-based antimicrobial pearlescent pigments[J]. Ceramics International, 2021, 47(18): 26421-26429. doi: 10.1016/j.ceramint.2021.06.053
[20] BALAGNA C, PERERO S, BOSCO F, et al. Antipathogen nanostructured coating for air filters[J]. Applied Surface Science, 2020, 508: 145283. doi: 10.1016/j.apsusc.2020.145283
[21] HUO Z Y, KIM Y J, SUH I Y, et al. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field[J]. Nature Communications, 2021, 12: 3693. doi: 10.1038/s41467-021-24028-5
[22] 陈美恋, 高燕. 空气消毒在预防呼吸道传染病中的意义及方法探讨[J]. 中国感染控制杂志, 2021, 20(6): 577-582. CHEN M L, GAO Y. Significance and method of air disinfection in preventing respiratory infectious diseases[J]. Chinese Journal of Infection Control, 2021, 20(6): 577-582 (in Chinese).
[23] FOROUGHI M, KHIADANI M, KAKHKI S, et al. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: A systematic review[J]. Science of the Total Environment, 2022, 811: 151404. doi: 10.1016/j.scitotenv.2021.151404
[24] van der VOSSEN J M B M, FAWZY A, OUWENS A M T, et al. Effective ultraviolet C light disinfection of respirators demonstrated in challenges with Geobacillus stearothermophilus spores and SARS-CoV-2 virus[J]. Journal of Hospital Infection, 2022, 122: 168-172. doi: 10.1016/j.jhin.2022.01.021
[25] BERNHARDT T, SEMMLER M L, SCHÄFER M, et al. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1-10.
[26] VISCONTI V, COTON E, RIGALMA K, et al. Effects of disinfectants on inactivation of mold spores relevant to the food industry: A review[J]. Fungal Biology Reviews, 2021, 38: 44-66. doi: 10.1016/j.fbr.2021.09.004
[27] ZHANG J, ZHANG A J, LIU D, et al. Customer preferences extraction for air purifiers based on fine-grained sentiment analysis of online reviews[J]. Knowledge-Based Systems, 2021, 228: 107259. doi: 10.1016/j.knosys.2021.107259
[28] CHEEK E, GUERCIO V, SHRUBSOLE C, et al. Portable air purification: Review of impacts on indoor air quality and health[J]. Science of the Total Environment, 2021, 766: 142585. doi: 10.1016/j.scitotenv.2020.142585
[29] LIU L, FANG J M, LI M, et al. The effect of air pollution on consumer decision making: A review[J]. Cleaner Engineering and Technology, 2022, 9: 100514. doi: 10.1016/j.clet.2022.100514
[30] LANAO M, ORMAD M P, IBARZ C, et al. Bactericidal effectiveness of O3, O3/H2O2 and O3/TiO2 onClostridium perfringens[J]. Ozone:Science & Engineering, 2008, 30(6): 431-438.
[31] BALAGNA C, FRANCESE R, PERERO S, et al. Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters[J]. Surface and Coatings Technology, 2021, 409: 126873. doi: 10.1016/j.surfcoat.2021.126873
[32] HE J H, KUMAR A, KHAN M, et al. Critical review of photocatalytic disinfection of bacteria: From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions[J]. Science of the Total Environment, 2021, 758: 143953. doi: 10.1016/j.scitotenv.2020.143953
[33] MANJUNATH S N, SAKAR M, KATAPADI M, et al. Recent case studies on the use of ozone to combat coronavirus: Problems and perspectives[J]. Environmental Technology & Innovation, 2021, 21: 101313.
[34] NAMDARI M, LEE C S, HAGHIGHAT F. Active ozone removal technologies for a safe indoor environment: A comprehensive review[J]. Building and Environment, 2021, 187: 107370. doi: 10.1016/j.buildenv.2020.107370
[35] 叶必雄, 王五一, 杨林生, 等. 二氧化氯与氯联合消毒对饮用水中消毒副产物的影响[J]. 环境化学, 2011, 30(7): 1236-1240. YE B X, WANG W Y, YANG L S, et al. Effect of combined disinfection with chlorine and chlorine dioxide on the formation of disinfection by-products in drinking water[J]. Environmental Chemistry, 2011, 30(7): 1236-1240 (in Chinese).
[36] DANG X Q, HUANG J Y, CAO L, et al. Plasma-catalytic oxidation of adsorbed toluene with gas circulation[J]. Catalysis Communications, 2013, 40: 116-119. doi: 10.1016/j.catcom.2013.06.025
[37] 张益坤, 姚鑫, 陈铭夏, 等. 低温等离子体除苯过程中臭氧的演变与作用[J]. 工业催化, 2020, 28(4): 68-72. ZHANG Y K, YAO X, CHEN M X, et al. Transmutation and effect of ozone generation on benzene removal by low temperature plasma[J]. Industrial Catalysis, 2020, 28(4): 68-72 (in Chinese).
[38] 何梓豪, 裴清清, 秋元孝之. 针对PM2.5的家用空气净化器HEPA滤网材料选择[J]. 环境工程, 2018, 36(8): 138-142. HE Z H, PEI Q Q, TAKASHI A. Selection of HEPA filter material specific for household air purifier with removal of PM2.5[J]. Environmental Engineering, 2018, 36(8): 138-142 (in Chinese).
[39] 张虹利, 施冰, 张明晶, 等. 空气净化器过滤网性质探究实验设计[J]. 化学教育(中英文), 2019, 40(15): 6-10. ZHANG H L, SHI B, ZHANG M J, et al. Experimental design of inquiring air purifier filter’s properties[J]. Chinese Journal of Chemical Education, 2019, 40(15): 6-10 (in Chinese).
[40] HIJNEN W A M, BEERENDONK E F, MEDEMA G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review[J]. Water Research, 2006, 40(1): 3-22. doi: 10.1016/j.watres.2005.10.030
[41] KONG J Y, LU Y, REN Y R, et al. The virus removal in UV irradiation, ozonation and chlorination[J]. Water Cycle, 2021, 2: 23-31. doi: 10.1016/j.watcyc.2021.05.001
[42] 陈玲, 周乐, 王书田, 等. 静电过滤器与其他空气消毒性能比较[J]. 中国新技术新产品, 2021(19): 83-86,131. CHEN L, ZHOU (L /Y), WANG S T, et al. Comparison of disinfection performance between electrostatic filter and other air filters[J]. New Technology & New Products of China, 2021(19): 83-86,131 (in Chinese).
[43] STANGE C, SIDHU J P S, TOZE S, et al. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3): 541-548. doi: 10.1016/j.ijheh.2019.02.002
[44] 黄俊东, 廖如燕, 蔡慧玲, 等. 常用化学消毒剂对新型冠状病毒灭活效果的研究进展[J]. 中国消毒学杂志, 2021, 38(11): 864-867. HUANG J D, LIAO R Y, CAI H L, et al. Research progress on inactivation effect of common chemical disinfectants on novel coronavirus[J]. Chinese Journal of Disinfection, 2021, 38(11): 864-867 (in Chinese).
[45] 林立旺, 陈路瑶, 章灿明, 等. 新型冠状病毒防控中消毒剂的正确选择[J]. 中国消毒学杂志, 2020, 37(3): 226-229. LIN L W, CHEN L Y, ZHANG C M, et al. Correct selection of disinfectants in prevention and control of novel coronavirus[J]. Chinese Journal of Disinfection, 2020, 37(3): 226-229 (in Chinese).
[46] 马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报, 2019, 59(8): 1512-1521. MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions[J]. Acta Microbiologica Sinica, 2019, 59(8): 1512-1521 (in Chinese).
[47] JIANG S Y, MA A L, RAMACHANDRAN S. Negative air ions and their effects on human health and air quality improvement[J]. International Journal of Molecular Sciences, 2018, 19(10): 2966. doi: 10.3390/ijms19102966
[48] SARAVANAN A, KUMAR P S, JEEVANANTHAM S, et al. Photocatalytic disinfection of micro-organisms: Mechanisms and applications[J]. Environmental Technology & Innovation, 2021, 24: 101909.
[49] GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances[J]. Applied Catalysis B:Environmental, 2018, 225: 51-75. doi: 10.1016/j.apcatb.2017.11.018
[50] GUAN D L, NIU C G, WEN X J, et al. Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation[J]. Journal of Colloid and Interface Science, 2018, 512: 272-281. doi: 10.1016/j.jcis.2017.10.068
[51] 薛文强, 于世平. 纳米银的抗菌机制及临床应用研究[J]. 中国微生态学杂志, 2022, 34(1): 117-120. XUE W Q, YU S P. Antibacterial mechanism and clinical application of silver nanoparticles[J]. Chinese Journal of Microecology, 2022, 34(1): 117-120 (in Chinese).
[52] ZHANG D R, HUANG L J, SUN D W, et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 452: 139078. doi: 10.1016/j.cej.2022.139078
[53] 孔之奇, 郭大亮, 吴安波, 等. 空气过滤材料用功能纤维研究进展[J]. 纤维素科学与技术, 2021, 29(3): 36-46. KONG Z Q, GUO D L, WU A B, et al. Research progress of functional fiber for air filtration composite material[J]. Journal of Cellulose Science and Technology, 2021, 29(3): 36-46 (in Chinese).
[54] JI X Z, HUANG J Y, TENG L, et al. Advances in particulate matter filtration: Materials, performance, and application[J]. Green Energy & Environment, 2023, 8(3): 673-697.
[55] ZACHARIAS N, HAAG A, BRANG-LAMPRECHT R, et al. Air filtration as a tool for the reduction of viral aerosols[J]. Science of the Total Environment, 2021, 772: 144956. doi: 10.1016/j.scitotenv.2021.144956
[56] XIA T L, CHEN C. Evolution of pressure drop across electrospun nanofiber filters clogged by solid particles and its influence on indoor particulate air pollution control[J]. Journal of Hazardous Materials, 2021, 402: 123479. doi: 10.1016/j.jhazmat.2020.123479
[57] MÖRITZ M, PETERS H, NIPKO B, et al. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems[J]. International Journal of Hygiene and Environmental Health, 2001, 203(5/6): 401-409.
[58] PARK D H, JOE Y H, PIRI A M, et al. Determination of air filter anti-viral efficiency against an airborne infectious virus[J]. Journal of Hazardous Materials, 2020, 396: 122640. doi: 10.1016/j.jhazmat.2020.122640
[59] NAKAJIMA S, KUMITA M, MATSUHASHI H, et al. Centrifugal filter for aerosol collection[J]. Aerosol Science and Technology, 2015, 49(10): 959-965. doi: 10.1080/02786826.2015.1086481
[60] RAEISZADEH M, ADELI B. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations[J]. ACS Photonics, 2020, 7(11): 2941-2951. doi: 10.1021/acsphotonics.0c01245
[61] SKUDRA A, REVALDE G, ZAJAKINA A, et al. UV inactivation of Semliki Forest virus andE. colibacteria by alternative light sources[J]. Journal of Photochemistry and Photobiology, 2022, 10: 100120. doi: 10.1016/j.jpap.2022.100120
[62] LINDEN K G, THURSTON J, SCHAEFER R, et al. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps[J]. Applied and Environmental Microbiology, 2007, 73(23): 7571-7574. doi: 10.1128/AEM.01587-07
[63] 杨成双, 王新昌, 范冰丰, 等. 紫外发光二极管的应用及研究进展[J]. 佛山科学技术学院学报(自然科学版), 2021, 39(5): 57-65. YANG C S, WANG X C, FAN B F, et al. Application and research progress of ultraviolet light-emitting diodes[J]. Journal of Foshan University (Natural Science Edition), 2021, 39(5): 57-65 (in Chinese).
[64] SHIMODA H, MATSUDA J, IWASAKI T, et al. Efficacy of 265-nm ultraviolet light in inactivating infectious SARS-CoV-2[ J]. Journal of Photochemistry and Photobiology, 2022, 9: 100100.
[65] XIONG W L, LIN Z P, ZHANG W Y, et al. Experimental and simulation studies on dust loading performance of a novel electrostatic precipitator with dielectric barrier electrodes[J]. Building and Environment, 2018, 144: 119-128. doi: 10.1016/j.buildenv.2018.08.008
[66] MO J H, TIAN E Z, PAN J. New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment[J]. Sustainable Cities and Society, 2020, 55: 102063. doi: 10.1016/j.scs.2020.102063
[67] FENG Z B, CAO S J, WANG J Q, et al. Indoor airborne disinfection with electrostatic disinfector (ESD): Numerical simulations of ESD performance and reduction of computing time[J]. Building and Environment, 2021, 200: 107956. doi: 10.1016/j.buildenv.2021.107956
[68] 侯雯琪, 曲云霞, 姜远征, 等. 静电型空气净化器臭氧释放研究[J]. 节能, 2022, 41(2): 56-59. HOU W Q, QU Y X, JIANG Y Z, et al. Research on ozone release from electrostatic air purifier[J]. Energy Conservation, 2022, 41(2): 56-59 (in Chinese).
[69] WANG P, LIU J J, WANG C H, et al. A holistic performance assessment of duct-type electrostatic precipitators[J]. Journal of Cleaner Production, 2022, 357: 131997. doi: 10.1016/j.jclepro.2022.131997
[70] WOLFGRUBER S, LOIBNER M, PUFF M, et al. SARS-CoV2 neutralizing activity of ozone on porous and non-porous materials[J]. New Biotechnology, 2022, 66: 36-45. doi: 10.1016/j.nbt.2021.10.001
[71] EPELLE E I, MACFARLANE A, CUSACK M, et al. Bacterial and fungal disinfection via ozonation in air[J]. Journal of Microbiological Methods, 2022, 194: 106431. doi: 10.1016/j.mimet.2022.106431
[72] BAYARRI B, CRUZ-ALCALDE A, LÓPEZ-VINENT N, et al. Can ozone inactivate SARS-CoV-2?A review of mechanisms and performance on viruses[J]. Journal of Hazardous Materials, 2021, 415: 125658. doi: 10.1016/j.jhazmat.2021.125658
[73] YANO H, NAKANO R, SUZUKI Y, et al. Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by gaseous ozone treatment[J]. The Journal of Hospital Infection, 2020, 106(4): 837-838. doi: 10.1016/j.jhin.2020.10.004
[74] RUBIO-ROMERO J C, del CARMEN PARDO-FERREIRA M, TORRECILLA-GARCÍA J A, et al. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic[J]. Safety Science, 2020, 129: 104830. doi: 10.1016/j.ssci.2020.104830
[75] LI X T, MA J Z, HE H. Recent advances in catalytic decomposition of ozone[J]. Journal of Environmental Sciences, 2020, 94: 14-31. doi: 10.1016/j.jes.2020.03.058
[76] FILIPE H A L, FIUZA S M, HENRIQUES C A, et al. Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations[J]. International Journal of Pharmaceutics, 2021, 609: 121139. doi: 10.1016/j.ijpharm.2021.121139
[77] 施琦, 慈颖, 王静, 等. 14种常用消毒剂的病毒灭活效果[J]. 中国国境卫生检疫杂志, 2022, 45(6): 470-473. SHI Q, CI Y, WANG J, et al. Study on the inactivation effect of 14 common disinfectants on virus[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(6): 470-473 (in Chinese).
[78] GOYAL S M, CHANDER Y, YEZLI S, et al. Evaluating the virucidal efficacy of hydrogen peroxide vapour[J]. Journal of Hospital Infection, 2014, 86(4): 255-259. doi: 10.1016/j.jhin.2014.02.003
[79] MEYERS C, KASS R, GOLDENBERG D, et al. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces[J]. Journal of Hospital Infection, 2021, 107: 45-49. doi: 10.1016/j.jhin.2020.09.026
[80] 叶利兰, 甘春娟, 陈垚, 等. 疫情防控期间含氯消毒剂大量使用对水生生物的影响综述[J]. 环境污染与防治, 2021, 43(5): 644-648. YE L L, GAN C J, CHEN Y, et al. Effect of chlorinated disinfectants usage on aquatic organism during the epidemic control: A review[J]. Environmental Pollution & Control, 2021, 43(5): 644-648 (in Chinese).
[81] 莫谦, 张磊. 中药空气消毒法应用现状[J]. 中医学报, 2021, 36(7): 1462-1467. MO Q, ZHANG L. Application status of air disinfection method with Chinese herbal medicine[J]. Acta Chinese Medicine, 2021, 36(7): 1462-1467 (in Chinese).
[82] 章洁, 方毕飞, 朱珍华. 中药煮沸熏蒸用于呼吸科病室空气消毒的效果[J]. 中医药管理杂志, 2019, 27(18): 225-226. ZHANG J, FANG B F, ZHU Z H. Effect of boiling fumigation of traditional Chinese medicine on air disinfection in respiratory ward[J]. Journal of Traditional Chinese Medicine Management, 2019, 27(18): 225-226 (in Chinese).
[83] ONDARTS M, HAJJI W, OUTIN J, et al. Non-Thermal Plasma for indoor air treatment: Toluene degradation in a Corona discharge at ppbv levels[J]. Chemical Engineering Research and Design, 2017, 118: 194-205. doi: 10.1016/j.cherd.2016.12.015
[84] 窦勇, 姚妙爱, 闾怀中, 等. 冷等离子体对单核增生李斯特菌的杀菌机理[J]. 中国农业科学, 2020, 53(24): 5104-5114. DOU Y, YAO M A, LV H Z, et al. Antibacterial mechanism of cold plasma against Listeria monocytogenes[J]. Scientia Agricultura Sinica, 2020, 53(24): 5104-5114 (in Chinese).
[85] CAI Y, WU X S, LUO Y, et al. Plasma-assisted rotating disk reactor toward disinfection of aquatic microorganisms[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13977-13986.
[86] QIN H B, QIU H J, HE S T, et al. Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage[J]. Journal of Hazardous Materials, 2022, 430: 128414. doi: 10.1016/j.jhazmat.2022.128414
[87] HASHIYADA M, NAKANISHI H, ASOGAWA M, et al. Removal effect of DNA contamination by hydrogen peroxide plasma compared to ethylene-oxide gas[J]. Legal Medicine, 2022, 54: 102009. doi: 10.1016/j.legalmed.2021.102009
[88] KIM Y E, MIN S C. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma[J]. Food Control, 2021, 130: 108392. doi: 10.1016/j.foodcont.2021.108392
[89] IBÁÑEZ-CERVANTES G, BRAVATA-ALCÁNTARA J C, NÁJERA-CORTÉS A S, et al. Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: Impact on the reutilization of disposable devices[J]. American Journal of Infection Control, 2020, 48(9): 1037-1041. doi: 10.1016/j.ajic.2020.06.216
[90] GUO L, YAO Z Q, YANG L, et al. Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection[J]. Chemical Engineering Journal, 2021, 421: 127742. doi: 10.1016/j.cej.2020.127742
[91] 刘骁, 孟茜, 张明莉, 等. 等离子体活化水对腐败希瓦氏菌杀菌效果及机理 [J]. 食品科学,2023,44(9):25-31. LIU X, MENG Q, ZHANG M L, et al. The inactivation effect and mechanism of PAW on Shewan Ella putrefacient [J]. Food Science,2023,44(9):25-31(in Chinese).
[92] LI A B, LI Q L, ZHOU B Z, et al. Temporal dynamics of negative air ion concentration and its relationship with environmental factors: Results from long-term on-site monitoring[J]. Science of the Total Environment, 2022, 832: 155057. doi: 10.1016/j.scitotenv.2022.155057
[93] 郭禹岐, 白莉. 负离子空气净化技术研究[J]. 北方建筑, 2019, 4(6): 35-38. GUO Y Q, BAI L. Study on negative ion air purification technology[J]. Northern Architecture, 2019, 4(6): 35-38 (in Chinese).
[94] NUNAYON S S, ZHANG H H, JIN X, et al. Experimental evaluation of positive and negative air ions disinfection efficacy under different ventilation duct conditions[J]. Building and Environment, 2019, 158: 295-301. doi: 10.1016/j.buildenv.2019.05.027
[95] BADHE R V, NIPATE S S. The use of negative oxygen ion clusters[O2(H2O)n]and bicarbonate ions[HCO3]as the supportive treatment of COVID-19 infections: A possibility[J]. Medical Hypotheses, 2021, 154: 110658. doi: 10.1016/j.mehy.2021.110658
[96] WU C C, LEE G W M, CHENG P, et al. Effect of wall surface materials on deposition of particles with the aid of negative air ions[J]. Journal of Aerosol Science, 2006, 37(5): 616-630. doi: 10.1016/j.jaerosci.2005.05.018
[97] SHIMIZU Y, ATEIA M, WANG M N, et al. Disinfection mechanism of E. coli by CNT-TiO2 composites: Photocatalytic inactivation vs. physical separation[J]. Chemosphere, 2019, 235: 1041-1049. doi: 10.1016/j.chemosphere.2019.07.006
[98] PRAKASH J, CHO J, MISHRA Y K. Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread[J]. Micro and Nano Engineering, 2022, 14: 100100. doi: 10.1016/j.mne.2021.100100
[99] YANG C, WU H, SHI J F, et al. Preparation of dopamine/titania hybrid nanoparticles through biomimetic mineralization and titanium(IV)–catecholate coordination for enzyme immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12665-12672.
[100] XU X Y, WU C B, GUO A Y, et al. Visible-light photocatalysis of organic contaminants and disinfection using biomimetic-synthesized TiO2-Ag-AgCl composite[J]. Applied Surface Science, 2022, 588: 152886. doi: 10.1016/j.apsusc.2022.152886
[101] DANILENKO I, GORBAN O, COSTA ZARAGOZA de OLIVEIRA PEDRO P M, et al. Photocatalytic composite nanomaterial and engineering solution for inactivation of airborne bacteria[J]. Topics in Catalysis, 2021, 64(13/14/15/16): 772-779.
[102] SHI Y J, MA J X, CHEN Y N, et al. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review[J]. Science of the Total Environment, 2022, 804: 150024. doi: 10.1016/j.scitotenv.2021.150024
[103] SHUAI C J, XU Y, FENG P, et al. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver[J]. Chemical Engineering Journal, 2019, 374: 304-315. doi: 10.1016/j.cej.2019.03.273
[104] de FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B:Biointerfaces, 2014, 113: 115-124. doi: 10.1016/j.colsurfb.2013.08.006
[105] PRAKASH J, SUN S H, SWART H C, et al. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Applied Materials Today, 2018, 11: 82-135. doi: 10.1016/j.apmt.2018.02.002
[106] YANG G X, YIN H B, LIU W H, et al. Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards Acinetobacter baumannii[J]. Applied Catalysis B:Environmental, 2018, 224: 175-182. doi: 10.1016/j.apcatb.2017.10.052
[107] HAMDANI A M, WANI I A, AHMAD BHAT N, et al. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme[J]. Food Chemistry, 2018, 240: 1201-1209. doi: 10.1016/j.foodchem.2017.08.060
[108] 朱元镇, 刘婧仪, 于常红. 溶菌酶的研究进展及应用[J]. 山东医学高等专科学校学报, 2018, 40(3): 207-210. doi: 10.3969/j.issn.1674-0947.2018.03.018 ZHU Y Z, LIU J Y, YU C H. Research progress and application of lysozyme[J]. Journal of Shandong Medical College, 2018, 40(3): 207-210 (in Chinese). doi: 10.3969/j.issn.1674-0947.2018.03.018
[109] EBY D M, LUCKARIFT H R, JOHNSON G R. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1553-1560.
[110] EBY D M, SCHAEUBLIN N M, FARRINGTON K E, et al. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles[J]. ACS Nano, 2009, 3(4): 984-994. doi: 10.1021/nn900079e
[111] JIANG J, ZHANG C, ZENG G M, et al. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay[J]. Journal of Hazardous Materials, 2016, 317: 416-429. doi: 10.1016/j.jhazmat.2016.05.089
[112] FULLER R, LANDRIGAN P J, BALAKRISHNAN K, et al. Pollution and health: A progress update[J]. The Lancet Planetary Health, 2022, 6(6): e535-e547. doi: 10.1016/S2542-5196(22)00090-0
[113] BAKLANOV A, MOLINA L T, GAUSS M. Megacities, air quality and climate[J]. Atmospheric Environment, 2016, 126: 235-249. doi: 10.1016/j.atmosenv.2015.11.059
[114] GURJAR B R, JAIN A, SHARMA A, et al. Human health risks in megacities due to air pollution[J]. Atmospheric Environment, 2010, 44(36): 4606-4613. doi: 10.1016/j.atmosenv.2010.08.011
[115] 司福德, 张磊. 我国新发传染病的流行现状及预防控制策略[J]. 职业与健康, 2013, 29(9): 1134-1136. SI F D, ZHANG L. The epidemic situation and preventive measures of emerging infectious diseases in China[J]. Occupation and Health, 2013, 29(9): 1134-1136 (in Chinese).
[116] CHALA B, HAMDE F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review[J]. Frontiers in Public Health, 2021, 9: 715759. doi: 10.3389/fpubh.2021.715759
[117] LAM S K K, KWONG E W Y, HUNG M S Y, et al. Emergency nurses’ perceptions regarding the risks appraisal of the threat of the emerging infectious disease situation in emergency departments[J]. International Journal of Qualitative Studies on Health and Well-Being, 2020, 15(1): 1718468. doi: 10.1080/17482631.2020.1718468
[118] 2022-23 Mpox Outbreak: Global Trends. Geneva: World Health Organization, 2023 [OL].
[119] WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020 [OL].
[120] 申逸骋, 胡迪, 张伟, 等. 空气净化器未来发展概述[J]. 洁净与空调技术, 2019(3): 70-77. SHEN Y C, HU D, ZHANG W, et al. Summary of the future development of air purifier[J]. Contamination Control & Air-Conditioning Technology, 2019(3): 70-77 (in Chinese).
[121] 陶建平, 杨瑞, 柳褚泉, 等. 我国空气净化器市场现状与发展概述[J]. 广东化工, 2020, 47(11): 92-94. TAO J P, YANG R, LIU Z Q, et al. Current situation and development of air purifier market in China[J]. Guangdong Chemical Industry, 2020, 47(11): 92-94 (in Chinese).
[122] 刘洪涛. 压力重重下艰难前进: 2021年1~8月中国空气净化器市场分析[J]. 电器, 2021(10): 22-23. LIU H T. Hard progress under heavy pressure—Analysis of China air purifier market from January to August, 2021[J]. China Appliance, 2021(10): 22-23 (in Chinese).