[1] |
XIONG L Q, TANG J W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances[J]. Advanced Energy Materials, 2021, 11(8): 2003216. doi: 10.1002/aenm.202003216
|
[2] |
MENG F X, XU J, DAI H W, et al. Even incorporation of nitrogen into Fe0 nanoparticles as crystalline Fe4N for efficient and selective trichloroethylene degradation[J]. Environmental Science & Technology, 2022, 56(7): 4489-4497.
|
[3] |
WEIDLICH T, KAMENICKÁ B, MELÁNOVÁ K, et al. Hydrodechlorination of different chloroaromatic compounds at room temperature and ambient pressure—Differences in reactivity of Cu- and Ni-based Al alloys in an alkaline aqueous solution[J]. Catalysts, 2020, 10(9): 994. doi: 10.3390/catal10090994
|
[4] |
CHAPLIN B P, REINHARD M, SCHNEIDER W F, et al. Critical review of Pd-based catalytic treatment of priority contaminants in water[J]. Environmental Science & Technology, 2012, 46(7): 3655-3670.
|
[5] |
XU J, LIU X, LOWRY G V, et al. Dechlorination mechanism of 2, 4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: Rapid adsorption, gradual dechlorination, and desorption of phenol[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7333-7342.
|
[6] |
XU J, CAO Z, LIU X, et al. Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2, 4-dichlorophenol removal: Interactions, influence factors, and kinetics[J]. Journal of Hazardous Materials, 2016, 317: 656-666. doi: 10.1016/j.jhazmat.2016.04.063
|
[7] |
ZHAO Z F, YU L, ZHENG L X, et al. TiO2@PDA inorganic-organic core-shell skeleton supported Pd nanodots for enhanced electrocatalytic hydrodechlorination[J]. Journal of Hazardous Materials, 2022, 435: 128998. doi: 10.1016/j.jhazmat.2022.128998
|
[8] |
LIU R, ZHAO H C, ZHAO X Y, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads[J]. Environmental Science & Technology, 2018, 52(17): 9992-10002.
|
[9] |
JIANG G M, LI X J, SHEN Y, et al. Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study[J]. Journal of Catalysis, 2020, 391: 414-423. doi: 10.1016/j.jcat.2020.09.008
|
[10] |
LOU Y Y, XIAO C, FANG J Y, et al. High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination[J]. Physical Chemistry Chemical Physics:PCCP, 2022, 24(6): 3896-3904. doi: 10.1039/D1CP04975E
|
[11] |
HUANG B B, ZHU Y Y, LI J, et al. Uncovering the intrinsic relationship of electrocatalysis and molecular electrochemistry for dissociative electron transfer to polychloroethanes at silver cathode[J]. Electrochimica Acta, 2017, 231: 590-600. doi: 10.1016/j.electacta.2017.02.055
|
[12] |
MA C A, LI M C, LIU Y N, et al. in situ FTIR studies on the electrochemical hydrodechlorination of 3, 4, 5, 6-tetrachloropicolinic acid on Ag cathode[J]. Electrochimica Acta, 2010, 55(9): 3171-3174. doi: 10.1016/j.electacta.2009.12.086
|
[13] |
LOU Y Y, HE W Y, VERLATO E, et al. Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination[J]. Journal of Electroanalytical Chemistry, 2019, 849: 113357. doi: 10.1016/j.jelechem.2019.113357
|
[14] |
LIU B Z, DING C, XIAO B, et al. Electrocatalytic dechlorination of chloroacetic acids on silver nanodendrites electrode[J]. Materials Science and Engineering:C, 2014, 37: 108-112. doi: 10.1016/j.msec.2014.01.015
|
[15] |
MAO R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7): 3829-3837.
|
[16] |
GAN G Q, ZHANG X Q, BU S Y, et al. Metal-nitrogen-carbon single-atom aerogels as self-supporting electrodes for dechlorination of 1, 2-dichloroethane[J]. Advanced Functional Materials, 2022, 32(48): 2206263. doi: 10.1002/adfm.202206263
|
[17] |
LIU B, LI G H, MUMFORD K G, et al. Low permeability zone remediation of trichloroethene via coupling electrokinetic migration with in situ electrochemical hydrodechlorination[J]. Chemosphere, 2020, 250: 126209. doi: 10.1016/j.chemosphere.2020.126209
|
[18] |
BARANTON S, COUTANCEAU C. Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction[J]. Applied Catalysis B:Environmental, 2013, 136/137: 1-8. doi: 10.1016/j.apcatb.2013.01.051
|
[19] |
YIN L F, DAI Y R, NIU J F, et al. Rapid dechlorination of chlorophenols in aqueous solution by[Ni| Cu]microcell[J]. Journal of Hazardous Materials, 2012, 209/210: 414-420. doi: 10.1016/j.jhazmat.2012.01.044
|
[20] |
LIU L, CHEN Y R, LI S L, et al. Enhanced electrocatalytic cathodic degradation of 2, 4-dichlorophenoxyacetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters[J]. Applied Catalysis B:Environmental, 2023, 332: 122748. doi: 10.1016/j.apcatb.2023.122748
|
[21] |
XU Y H, YAO Z Q, MAO Z C, et al. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction[J]. Applied Catalysis B:Environmental, 2020, 277: 119057. doi: 10.1016/j.apcatb.2020.119057
|
[22] |
LI N, SONG X Z, WANG L, et al. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24019-24029.
|
[23] |
WANG J, FAN S Y, LI X Y, et al. Rod-like nanostructured Cu-co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 12915-12923.
|
[24] |
WANG Q, DU J, MA Y Y, et al. Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2023, 451: 139107. doi: 10.1016/j.cej.2022.139107
|
[25] |
SHU X Y, YANG Q, YAO F B, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes[J]. Chemical Engineering Journal, 2019, 358: 903-911. doi: 10.1016/j.cej.2018.10.095
|
[26] |
YANG L M, CHEN Z L, CUI D, et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol[J]. Chemical Engineering Journal, 2019, 359: 894-901. doi: 10.1016/j.cej.2018.11.099
|
[27] |
ZHANG Z Q, CHEN Y G, ZHOU L Q, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring[J]. Nature Communications, 2019, 10: 1657. doi: 10.1038/s41467-019-09596-x
|
[28] |
YANG K X, KONG Y J, HUANG L Z, et al. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts[J]. Chemical Engineering Journal, 2022, 450: 138467. doi: 10.1016/j.cej.2022.138467
|
[29] |
LI J C, LI M, LI J, et al. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts[J]. Applied Catalysis B:Environmental, 2021, 282: 119518. doi: 10.1016/j.apcatb.2020.119518
|
[30] |
CHU C H, HUANG D H, GUPTA S, et al. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis[J]. Nature Communications, 2021, 12: 5179. doi: 10.1038/s41467-021-25526-2
|
[31] |
HUANG D H, KIM D J, RIGBY K, et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination[J]. Environmental Science & Technology, 2021, 55(19): 13306-13316.
|
[32] |
MAO Z C, LIU L H, YANG H B, et al. Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction[J]. Electrochimica Acta, 2021, 391: 138886. doi: 10.1016/j.electacta.2021.138886
|
[33] |
CHEN M, SHU S, LI J X, et al. Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction[J]. Journal of Hazardous Materials, 2020, 389: 121876. doi: 10.1016/j.jhazmat.2019.121876
|
[34] |
JIANG K X, SHI X L, CHEN M, et al. Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction[J]. Journal of Hazardous Materials, 2021, 411: 125119. doi: 10.1016/j.jhazmat.2021.125119
|
[35] |
LOU Z M, LI Y Z, ZHOU J S, et al. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2, 4-DCBA: Enhanced electrical conductivity and reactive activity[J]. Journal of Hazardous Materials, 2019, 362: 148-159. doi: 10.1016/j.jhazmat.2018.08.066
|
[36] |
ZHOU J S, LOU Z M, XU J, et al. Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst[J]. Chemical Engineering Journal, 2019, 358: 1176-1185. doi: 10.1016/j.cej.2018.10.098
|
[37] |
ZHOU J S, LOU Z M, YANG K L, et al. Electrocatalytic dechlorination of 2, 4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: Adsorption and dechlorination activity[J]. Applied Catalysis B:Environmental, 2019, 244: 215-224. doi: 10.1016/j.apcatb.2018.11.052
|
[38] |
LI J X, PENG Y Y, ZHANG W D, et al. Hierarchical Pd/MnO2 nanosheet array supported on Ni foam: An advanced electrode for electrocatalytic hydrodechlorination reaction[J]. Applied Surface Science, 2020, 509: 145369. doi: 10.1016/j.apsusc.2020.145369
|
[39] |
LOU Z M, ZHOU J S, SUN M, et al. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs[J]. Chemical Engineering Journal, 2018, 352: 549-557. doi: 10.1016/j.cej.2018.07.057
|
[40] |
LI J J, WANG Y, ZHAO B, et al. Unraveling kinetics and mechanism of electrocatalytic hydrodechlorination of chlorinated PPCPs by nickel-cobalt metal organic framework supported palladium composite electrode[J]. Applied Catalysis B:Environmental, 2023, 332: 122754. doi: 10.1016/j.apcatb.2023.122754
|
[41] |
WANG K F, SHU S, CHEN M, et al. Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction[J]. Chemical Engineering Journal, 2020, 381: 122673. doi: 10.1016/j.cej.2019.122673
|
[42] |
LOU Z M, YU C C, WEN X F, et al. Construction of Pd nanoparticles/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination[J]. Applied Catalysis B:Environmental, 2022, 317: 121730. doi: 10.1016/j.apcatb.2022.121730
|
[43] |
LI J X, CHEN Y J, BAI R Y, et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2022, 435: 134932. doi: 10.1016/j.cej.2022.134932
|
[44] |
FU C H, SHU S, HU L, et al. Electrocatalytic nitrate reduction on bimetallic Palladium-Copper Nanowires: Key surface structure for selective dinitrogen formation[J]. Chemical Engineering Journal, 2022, 435: 134969. doi: 10.1016/j.cej.2022.134969
|
[45] |
PENG Y Y, CUI M Y, ZHANG Z Y, et al. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles[J]. ACS Catalysis, 2019, 9(12): 10803-10811. doi: 10.1021/acscatal.9b02282
|
[46] |
ZHOU Y J, ZHANG G, JI Q H, et al. Enhanced stabilization and effective utilization of atomic hydrogen on Pd-In nanoparticles in a flow-through electrode[J]. Environmental Science & Technology, 2019, 53(19): 11383-11390.
|
[47] |
LEE J H, KATTEL S, JIANG Z, et al. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts[J]. Nature Communications, 2019, 10(1): 3724. doi: 10.1038/s41467-019-11352-0
|
[48] |
ZHANG J, HU L, QIAN Y, et al. Synthesis of intermetallic FePtPd nanoparticles and their enhanced catalysis for electro-oxidation of methanol[J]. Surfaces and Interfaces, 2022, 35: 102485. doi: 10.1016/j.surfin.2022.102485
|
[49] |
FU W Y, SHU S, LI J X, et al. Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. Nanoscale, 2019, 11(34): 15892-15899. doi: 10.1039/C9NR04634H
|
[50] |
CHEN Y J, FENG C, WANG W H, et al. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance[J]. Separation and Purification Technology, 2022, 289: 120731. doi: 10.1016/j.seppur.2022.120731
|
[51] |
LI J, CHEN J X, WANG Q A, et al. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium[J]. Chemistry of Materials, 2017, 29(23): 10060-10067. doi: 10.1021/acs.chemmater.7b03732
|
[52] |
LUO F, ZHANG Q, YU X X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angewandte Chemie, 2018, 130(45): 15078-15083. doi: 10.1002/ange.201810102
|
[53] |
WANG P, SHI X L, FU C H, et al. Strong pyrrolic-N-Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. Nanoscale, 2020, 12(2): 843-850. doi: 10.1039/C9NR07528C
|
[54] |
MA L, WANG C M, GONG M, et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications[J]. ACS Nano, 2012, 6(11): 9797-9806. doi: 10.1021/nn304237u
|
[55] |
ZHOU J S, LOU Z M, WANG Z N, et al. Electrocatalytic dechlorination of 2, 4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: Role of adsorption in catalysis[J]. Chemical Engineering Journal, 2021, 414: 128758. doi: 10.1016/j.cej.2021.128758
|
[56] |
JIANG G M, SHI X L, CUI M Y, et al. Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4072-4083.
|
[57] |
FAN Z M, ZHAO H C, WANG K F, et al. Enhancing electrocatalytic hydrodechlorination through interfacial microenvironment modulation[J]. Environmental Science & Technology, 2023, 57(3): 1499-1509.
|
[58] |
GUO X G, FACCHETTI A. The journey of conducting polymers from discovery to application[J]. Nature Materials, 2020, 19(9): 922-928. doi: 10.1038/s41563-020-0778-5
|
[59] |
XU G R, LIU F Y, LIU Z H, et al. Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: The “molecular window gauze” induced the selectivity for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(42): 21083-21089. doi: 10.1039/C5TA06644A
|
[60] |
XU G R, BAI J A, YAO L, et al. Polyallylamine-functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers[J]. ACS Catalysis, 2017, 7(1): 452-458. doi: 10.1021/acscatal.6b03049
|
[61] |
XU G R, BAI J, JIANG J X, et al. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control[J]. Chemical Science, 2017, 8(12): 8411-8418. doi: 10.1039/C7SC04109H
|
[62] |
GAO M T, TAN H, ZHU P Q, et al. Why phenol is selectively hydrogenated to cyclohexanol on Ru (0001): An experimental and theoretical study[J]. Applied Surface Science, 2021, 558: 149880. doi: 10.1016/j.apsusc.2021.149880
|
[63] |
GU Z N, ZHANG Z Y, NI N, et al. Simultaneous phenol removal and resource recovery from phenolic wastewater by electrocatalytic hydrogenation[J]. Environmental Science & Technology, 2022, 56(7): 4356-4366.
|
[64] |
MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569. doi: 10.1039/C3CS60468C
|
[65] |
YANG K C, ZHAO Y X, ZHOU X, et al. “Self-degradation” of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system[J]. Water Research, 2021, 206: 117740. doi: 10.1016/j.watres.2021.117740
|
[66] |
SONG Y, GUTIÉRREZ O Y, HERRANZ J, et al. Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions[J]. Applied Catalysis B:Environmental, 2016, 182: 236-246. doi: 10.1016/j.apcatb.2015.09.027
|
[67] |
WANG S, ZHU T H, JIANG N, et al. Hydrogenation of phenol to cyclohexanol using carbon encapsulated Ni–Co alloy nanoparticles[J]. Reaction Chemistry & Engineering, 2022, 7(2): 429-441.
|
[68] |
HU L, SHI L, SHEN F, et al. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment[J]. Water Research, 2022, 225: 119210. doi: 10.1016/j.watres.2022.119210
|
[69] |
MAO R, ZHAO X, LAN H C, et al. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J]. Water Research, 2015, 77: 1-12. doi: 10.1016/j.watres.2015.03.002
|
[70] |
JIANG G M, WANG K F, LI J Y, et al. Electrocatalytic hydrodechlorination of 2, 4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution[J]. Chemical Engineering Journal, 2018, 348: 26-34. doi: 10.1016/j.cej.2018.04.173
|
[71] |
GUO J X, ZHANG X Q, SUN Y F, et al. NiMoS3 nanorods as pH-tolerant electrocatalyst for efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9006-9013.
|