[1] 中华人民共和国生态环境部. 2020年全国大、中城市固体废物污染环境防治年报[R]. 北京: 中华人民共和国生态环境部, 2020. Ministry of Ecology and Environment of The People's Republic Of China. 2020 Annual Report on Environmental Prevention and Control of Solid Waste Pollution in Large and Medium-sized Cities Nationwide[R]. Beijing: Ministry of Ecology and Environment of the People's Republic of China (in Chinese).
[2] FANG C R, CHEN B H, ZHUANG H F, et al. Antibiotics in leachates from landfills in northern Zhejiang Province, China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105(1): 36-40. doi: 10.1007/s00128-020-02894-x
[3] SU Y L, ZHANG Z J, WU D, et al. Occurrence of microplastics in landfill systems and their fate with landfill age[J]. Water Research, 2019, 164: 114968. doi: 10.1016/j.watres.2019.114968
[4] YAN H, COUSINS I T, ZHANG C J, et al. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater[J]. Science of the Total Environment, 2015, 524/525: 23-31. doi: 10.1016/j.scitotenv.2015.03.111
[5] WU D Q, SUI Q, YU X, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China[J]. Science of the Total Environment, 2021, 753: 141653. doi: 10.1016/j.scitotenv.2020.141653
[6] HAN Z Y, MA H N, SHI G Z, et al. A review of groundwater contamination near municipal solid waste landfill sites in China[J]. Science of the Total Environment, 2016, 569/570: 1255-1264. doi: 10.1016/j.scitotenv.2016.06.201
[7] YU X, SUI Q, LYU S G, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China[J]. Environment International, 2020, 135: 105404. doi: 10.1016/j.envint.2019.105404
[8] ZHANG X H, XU Y B, HE X L, et al. Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water[J]. Environmental Pollution, 2016, 218: 1255-1261. doi: 10.1016/j.envpol.2016.08.081
[9] YU X P, YU F R, LI Z P, et al. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section)[J]. Journal of Hazardous Materials, 2023, 443: 130369. doi: 10.1016/j.jhazmat.2022.130369
[10] XU X M, XU Y R, XU N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam[J]. Chemosphere, 2022, 301: 134721. doi: 10.1016/j.chemosphere.2022.134721
[11] XIAO R H, HUANG D L, DU L, et al. Antibiotic resistance in soil-plant systems: A review of the source, dissemination, influence factors, and potential exposure risks[J]. Science of the Total Environment, 2023, 869: 161855-161855. doi: 10.1016/j.scitotenv.2023.161855
[12] WANG S, QIAN J S, ZHANG B L, et al. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across China[J]. Environmental Science & Technology, 2023, 57(5): 1907-1918.
[13] LI Y, LI J H, DENG C. Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China[J]. Environmental Pollution, 2014, 184: 94-100. doi: 10.1016/j.envpol.2013.08.027
[14] LI J, XI B, ZHU G H, et al. A critical review of the occurrence, fate and treatment of per- and polyfluoroalkyl substances (PFASs) in landfills[J]. Environmental Research, 2023, 218: 114980 doi: 10.1016/j.envres.2022.114980
[15] ZHOU Y F, HE G, JIANG X L, et al. Microplastic contamination is ubiquitous in riparian soils and strongly related to elevation, precipitation and population density[J]. Journal of Hazardous Materials, 2021, 411: 125178. doi: 10.1016/j.jhazmat.2021.125178
[16] 卫先宁, 季民, 李茹莹. 再生水中药品及个人护理品分布和环境风险分析[J]. 环境科学与技术, 2020, 43(12): 211-216. doi: 10.19672/j.cnki.1003-6504.2020.12.028 WEI X N, JI M, LI R Y. Distribution of pharmaceutical and personal care products in reclaimed water and environmental risk analysis[J]. Environmental Science & Technology, 2020, 43(12): 211-216 (in Chinese). doi: 10.19672/j.cnki.1003-6504.2020.12.028
[17] 潘潇, 强志民, 王为东. 巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险[J]. 环境化学, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502 PAN X, QIANG Z M, WANG W D. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake[J]. Environmental Chemistry, 2016, 35(11): 2234-2244 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
[18] OHORO, ADENIJI, OKOH, et al. Distribution and chemical analysis of pharmaceuticals and personal care products (PPCPs) in the environmental systems: A review[J]. International Journal of Environmental Research and Public Health, 2019, 16(17): 3026. doi: 10.3390/ijerph16173026
[19] 陈宇, 王涌涛, 黄天寅, 等. 骆马湖水体中药品及个人护理品的污染特征及风险评估[J]. 环境科学研究, 2021, 34(4): 902-909. doi: 10.13198/j.issn.1001-6929.2020.10.13 CHEN Y, WANG Y T, HUANG T Y, et al. Pollution characteristics and risk assessment of pharmaceuticals and personal care products (PPCPs) in Luoma Lake[J]. Research of Environmental Sciences, 2021, 34(4): 902-909 (in Chinese). doi: 10.13198/j.issn.1001-6929.2020.10.13
[20] QI C D, HUANG J, WANG B, et al. Contaminants of emerging concern in landfill leachate in China: A review[J]. Emerging Contaminants, 2018, 4(1): 1-10. doi: 10.1016/j.emcon.2018.06.001
[21] YIN L N, WANG B, YUAN H L, et al. Pay special attention to the transformation products of PPCPs in environment[J]. Emerging Contaminants, 2017, 3(2): 69-75. doi: 10.1016/j.emcon.2017.04.001
[22] YU Z F, HE P J, SHAO L M, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age[J]. Water Research, 2016, 106: 583-592. doi: 10.1016/j.watres.2016.10.042
[23] WU D, HUANG X H, SUN J Z, et al. Antibiotic resistance genes and associated microbial community conditions in aging landfill systems[J]. Environmental Science & Technology, 2017, 51(21): 12859-12867.
[24] LIU H Y, LI H, QIU L B, et al. The panorama of antibiotics and the related antibiotic resistance genes (ARGs) in landfill leachate[J]. Waste Management, 2022, 144(5): 19-28.
[25] WANG P L, WU D, YOU X X, et al. Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills[J]. Environmental Pollution, 2019, 255: 113222. doi: 10.1016/j.envpol.2019.113222
[26] LU M C, CHEN Y Y, CHIOU M R, et al. Occurrence and treatment efficiency of pharmaceuticals in landfill leachates[J]. Waste Management, 2016, 55: 257-264. doi: 10.1016/j.wasman.2016.03.029
[27] YU X, SUI Q, LYU S G, et al. Rainfall influences occurrence of pharmaceutical and personal care products in landfill leachates: Evidence from seasonal variations and extreme rainfall episodes[J]. Environmental Science & Technology, 2021, 55(8): 4822-4830.
[28] XUE X D, CHEN B H, WANG H, et al. Antibiotics in the municipal solid waste incineration plant leachate treatment process[J]. Chemistry and Ecology, 2021, 37(7): 633-645. doi: 10.1080/02757540.2021.1924695
[29] HE P J, YU Z F, SHAO L M, et al. Fate of antibiotics and antibiotic resistance genes in a full-scale restaurant food waste treatment plant: Implications of the roles beyond heavy metals and mobile genetic elements[J]. Journal of Environmental Sciences, 2019, 85: 17-34. doi: 10.1016/j.jes.2019.04.004
[30] WANG Y Q, LEI Y, LIU X, et al. Sulfonamide and tetracycline in landfill leachates from seven municipal solid waste (MSW) landfills: Seasonal variation and risk assessment[J]. Science of the Total Environment, 2022, 825: 153936. doi: 10.1016/j.scitotenv.2022.153936
[31] YOU X X, WU D, WEI H W, et al. Fluoroquinolones and β-lactam antibiotics and antibiotic resistance genes in autumn leachates of seven major municipal solid waste landfills in China[J]. Environment International, 2018, 113: 162-169. doi: 10.1016/j.envint.2018.02.002
[32] YU X, SUI Q, LYU S G, et al. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment[J]. Environmental Science & Technology, 2020, 54(16): 9757-9768.
[33] SUI Q, ZHAO W T, CAO X Q, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor[J]. Journal of Hazardous Materials, 2017, 323: 99-108. doi: 10.1016/j.jhazmat.2016.03.047
[34] ZHANG R, YANG S, AN Y W, et al. Antibiotics and antibiotic resistance genes in landfills: A review[J]. Science of the Total Environment, 2022, 806: 150647. doi: 10.1016/j.scitotenv.2021.150647
[35] WU D, HUANG Z T, YANG K, et al. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China[J]. Environmental Science & Technology, 2015, 49(7): 4122-4128.
[36] ZHAO R X, FENG J, YIN X L, et al. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis[J]. Water Research, 2018, 134: 126-139. doi: 10.1016/j.watres.2018.01.063
[37] SU Y L, WU D, XIA H P, et al. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress[J]. Environment International, 2019, 128: 407-416. doi: 10.1016/j.envint.2019.05.007
[38] SU Y L, WANG J X, HUANG Z T, et al. On-site removal of antibiotics and antibiotic resistance genes from leachate by aged refuse bioreactor: Effects of microbial community and operational parameters[J]. Chemosphere, 2017, 178: 486-495. doi: 10.1016/j.chemosphere.2017.03.063
[39] SHI J H, WU D, SU Y L, et al. (Nano)microplastics promote the propagation of antibiotic resistance genes in landfill leachate[J]. Environmental Science:Nano, 2020, 7(11): 3536-3546. doi: 10.1039/D0EN00511H
[40] SU Y L, ZHANG Z J, ZHU J D, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process[J]. Environmental Pollution, 2021, 270: 116278. doi: 10.1016/j.envpol.2020.116278
[41] WANG Y Q, ZHANG R, LEI Y, et al. Antibiotic resistance genes in landfill leachates from seven municipal solid waste landfills: Seasonal variations, hosts, and risk assessment[J]. Science of the Total Environment, 2022, 853: 158677. doi: 10.1016/j.scitotenv.2022.158677
[42] LIU L J, SHI L, LI P, et al. Seasonal dynamics survey and association analysis of microbiota communities, antibiotic resistance genes distribution, and biotoxicities characterization in landfill-leachate[J]. Ecotoxicology and Environmental Safety, 2022, 245: 114103. doi: 10.1016/j.ecoenv.2022.114103
[43] COX K D, COVERNTON G A, DAVIES H L, et al. Human consumption of microplastics[J]. Environmental Science & Technology, 2019, 53(12): 7068-7074.
[44] THOMPSON R C, MOORE C J, VOM SAAL F S, et al. Plastics, the environment and human health: Current consensus and future trends[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2009, 364(1526): 2153-2166. doi: 10.1098/rstb.2009.0053
[45] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559
[46] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193): 144-145. doi: 10.1126/science.1254065
[47] GOLWALA H, ZHANG X Y, ISKANDER S M, et al. Solid waste: An overlooked source of microplastics to the environment[J]. Science of the Total Environment, 2021, 769: 144581. doi: 10.1016/j.scitotenv.2020.144581
[48] VAUGHAN R, TURNER S D, ROSE N L. Microplastics in the sediments of a UK urban lake[J]. Environmental Pollution, 2017, 229: 10-18. doi: 10.1016/j.envpol.2017.05.057
[49] SU L, XUE Y G, LI L Y, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. doi: 10.1016/j.envpol.2016.06.036
[50] XU Z Q, SUI Q, LI A M, et al. How to detect small microplastics (20–100μm) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification[J]. Science of the Total Environment, 2020, 733: 139218. doi: 10.1016/j.scitotenv.2020.139218
[51] ZHANG F, ZHAO Y T, WANG D D, et al. Current technologies for plastic waste treatment: A review[J]. Journal of Cleaner Production, 2021, 282: 124523. doi: 10.1016/j.jclepro.2020.124523
[52] HOU L Y, KUMAR D, YOO C G, et al. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills[J]. Chemical Engineering Journal, 2021, 406: 126715. doi: 10.1016/j.cej.2020.126715
[53] SHEN M C, XIONG W P, SONG B, et al. Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies[J]. Chemosphere, 2022, 305: 135325. doi: 10.1016/j.chemosphere.2022.135325
[54] SUN J, ZHU Z R, LI W H, et al. Revisiting microplastics in landfill leachate: Unnoticed tiny microplastics and their fate in treatment works[J]. Water Research, 2021, 190: 116784. doi: 10.1016/j.watres.2020.116784
[55] BIAN K, HU B, JIANG H R, et al. Is the presence of Cu(II) and p-benzoquinone a challenge for the removal of microplastics from landfill leachate?[J]. Science of the Total Environment, 2022, 851: 158395. doi: 10.1016/j.scitotenv.2022.158395
[56] YU F, WU Z J, WANG J Y, et al. Effect of landfill age on the physical and chemical characteristics of waste plastics/microplastics in a waste landfill sites[J]. Environmental Pollution, 2022, 306(1): 119366.
[57] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate[J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060
[58] WAN Y, CHEN X, LIU Q, et al. Informal landfill contributes to the pollution of microplastics in the surrounding environment[J]. Environmental Pollution, 2022, 293: 118586. doi: 10.1016/j.envpol.2021.118586
[59] 张中键. 城市垃圾填埋系统中微塑料的赋存、去除特征及其对抗生素抗性基因的影响[D]. 上海: 华东师范大学, 2020. ZHANG Z J. Occurrence and removal characteristics of microplastics in urban landfill system and impact on antibiotic resistance genes[D]. Shanghai: East China Normal University, 2020 (in Chinese).
[60] ZHANG Z J, SU Y L, ZHU J D, et al. Distribution and removal characteristics of microplastics in different processes of the leachate treatment system[J]. Waste Management, 2021, 120: 240-247. doi: 10.1016/j.wasman.2020.11.025
[61] EPA. Special Report on Environmental Endocrine Disruption; An effects assessment and analysis[C]. Risk Assessment Forum U. S. Environmental Protection Agency, 1998: 11-56.
[62] GONG Y F, TIAN H, DONG Y F, et al. Thyroid disruption in male goldfish (Carassius auratus) exposed to leachate from a municipal waste treatment plant: Assessment combining chemical analysis and in vivo bioassay[J]. Science of the Total Environment, 2016, 554/555: 64-72. doi: 10.1016/j.scitotenv.2016.02.188
[63] HUANG Z, ZHAO J L, ZHANG C Y, et al. Profile and removal of bisphenol analogues in hospital wastewater, landfill leachate, and municipal wastewater in South China[J]. Science of the Total Environment, 2021, 790: 148269. doi: 10.1016/j.scitotenv.2021.148269
[64] 姜忠峰, 梁峰, 刘艳伟, 等. 全氟化合物的危害和治理[J]. 生态经济, 2022, 38(4): 5-8. JIANG Z F, LIANG F, LIU Y W, et al. Harm and treatment of perfluorinated compounds[J]. Ecological Economy, 2022, 38(4): 5-8 (in Chinese).
[65] 吴修鹏, 马志远, 李志华, 等. 全氟化合物内分泌干扰作用研究[J]. 毒理学杂志, 2021, 35(5): 436-439. doi: 10.16421/j.cnki.1002-3127.2021.05.014 WU X P, MA Z Y, LI Z H, et al. Study on endocrine disrupting effects of perfluorinated compounds[J]. Journal of Toxicology, 2021, 35(5): 436-439 (in Chinese). doi: 10.16421/j.cnki.1002-3127.2021.05.014
[66] FUERTES I, GÓMEZ-LAVÍN S, ELIZALDE M P, et al. Perfluorinated alkyl substances (PFASs) in northern Spain municipal solid waste landfill leachates[J]. Chemosphere, 2017, 168: 399-407. doi: 10.1016/j.chemosphere.2016.10.072
[67] 谷萌, 魏潇潇, 刘华祖, 等. 垃圾填埋与焚烧渗滤液全(多)氟化合物赋存特征[J]. 中国环境科学, 2020, 40(4): 1555-1562. doi: 10.3969/j.issn.1000-6923.2020.04.021 GU M, WEI X X, LIU H Z, et al. Occurrence of per-and polyfluoroalkyl substances in leachates from landfills and incineration plants[J]. China Environmental Science, 2020, 40(4): 1555-1562: (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.04.021
[68] BUCK R C, FRANKLIN J, BERGER U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4): 513-541. doi: 10.1002/ieam.258
[69] 黄福义, 安新丽, 李力, 等. 生活垃圾填埋场对河流抗生素抗性基因的影响[J]. 中国环境科学, 2017, 37(1): 203-209. doi: 10.3969/j.issn.1000-6923.2017.01.026 HUANG F Y, AN X L, LI L, et al. High-throughput profiling of antibiotic resistance genes in river in the vicinity of a landfill[J]. China Environmental Science, 2017, 37(1): 203-209(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.01.026
[70] PENG X Z, OU W H, WANG C W, et al. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China[J]. Science of the Total Environment, 2014, 490: 889-898. doi: 10.1016/j.scitotenv.2014.05.068
[71] HAN Y, HU L X, LIU T, et al. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China[J]. Science of the Total Environment, 2022, 837: 155705. doi: 10.1016/j.scitotenv.2022.155705
[72] LIU H, LIANG Y, ZHANG D, et al. Impact of MSW landfill on the environmental contamination of phthalate esters[J]. Waste Management, 2010, 30(8/9): 1569-1576.
[73] TAO J, CHEN Y F, WAN S, et al. Abundance and diversity of ARGs in aerosol environments of waste recycling sites[J]. Journal of Aerosol Science, 2022, 165: 106020. doi: 10.1016/j.jaerosci.2022.106020
[74] TIAN Y, YAO Y M, CHANG S, et al. Occurrence and phase distribution of neutral and ionizable per- and polyfluoroalkyl substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China[J]. Environmental Science & Technology, 2018, 52(3): 1301-1310.
[75] SMALLWOOD T J, ROBEY N M, LIU Y L, et al. Per- and polyfluoroalkyl substances (PFAS) distribution in landfill gas collection systems: Leachate and gas condensate partitioning[J]. Journal of Hazardous Materials, 2023, 448: 130926. doi: 10.1016/j.jhazmat.2023.130926
[76] 罗伟. 生活垃圾中转站渗滤液全量化处理新工艺[J]. 能源与环境, 2022(6): 86-88. LUO W. New technology of full quantification treatment of leachate in domestic waste transfer station[J]. Energy and Environment, 2022(6): 86-88(in Chinese).
[77] YANG J, XIANG J Y, XIE Y J, et al. Removal behavior and key drivers of antibiotic resistance genes in two full-scale leachate treatment plants[J]. Water Research, 2022, 226: 119239. doi: 10.1016/j.watres.2022.119239
[78] 郭芳. 垃圾渗滤液纳滤浓水中难降解有机物和全氟化合物的去除研究[D]. 北京: 北京交通大学, 2020. GUO F. Removal of refractory organics and perfluoroalkyl substances in nanofiltration concentrates in municipal solid waste leachate treatment plants[D]. Beijing: Beijing Jiaotong University, 2020(in Chinese).
[79] ZAN F X, HUANG H, GUO G, et al. Sulfite pretreatment enhances the biodegradability of primary sludge and waste activated sludge towards cost-effective and carbon-neutral sludge treatment[J]. Science of the Total Environment, 2021, 780: 146634. doi: 10.1016/j.scitotenv.2021.146634
[80] 李慧, 张凯钧, 郭勤, 等. 新MFB组合工艺在垃圾渗滤液处理中的应用研究[J]. 水处理技术, 2022, 48(12): 114-118. LI H, ZHANG K J, GUO Q, et al. The research of MFB new combination process in the domestic garbage leachate[J]. Technology of Water Treatment, 2022, 48(12): 114-118 (in Chinese).
[81] BAI F L, TIAN H, WANG C G, et al. Treatment of nanofiltration concentrate of landfill leachate using advanced oxidation processes incorporated with bioaugmentation[J]. Environmental Pollution, 2023, 318: 120827. doi: 10.1016/j.envpol.2022.120827
[82] 曹徐齐, 隋倩, 吕树光, 等. 垃圾填埋场渗滤液中药物和个人护理品的存在与去除[J]. 中国环境科学, 2016, 36(7): 2027-2034. doi: 10.3969/j.issn.1000-6923.2016.07.018 CAO X Q, SUI Q, LV S G, et al. Occurrence and removal of pharmaceuticals and personal care products in leachates from a landfill site of municipal solid waste[J]. China Environmental Science, 2016, 36(7): 2027-2034(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.018
[83] DENG M J, KUO D T F, WU Q H, et al. Organophosphorus flame retardants and heavy metals in municipal landfill leachate treatment system in Guangzhou, China[J]. Environmental Pollution, 2018, 236: 137-145. doi: 10.1016/j.envpol.2018.01.042
[84] ZHANG C H, PENG Y, NIU X M, et al. Determination of perfluoroalkyl substances in municipal landfill leachates from Beijing, China[J]. Asian Journal of Chemistry, 2014, 26(13): 3833-3836. doi: 10.14233/ajchem.2014.15963
[85] 高立红. 北京市城市环境有机磷酸酯污染水平和分布特征研究[D]. 北京: 北京科技大学, 2016. GAO L H. Occurrence and distribution of organophosphate esters in the urban area of Beijing[D]. Beijing: University of Science and Technology Beijing, 2016(in Chinese).
[86] XU L, XU S H, ZHI L Q, et al. Methylsiloxanes release from one landfill through yearly cycle and their removal mechanisms (especially hydroxylation) in leachates[J]. Environmental Science & Technology, 2017, 51(21): 12337-12346.
[87] FANG C R, CHU Y X, JIANG L H, et al. Removal of phthalic acid diesters through a municipal solid waste landfill leachate treatment process[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 585-591. doi: 10.1007/s10163-017-0625-1
[88] QI C D, YU G, ZHONG M M, et al. Organophosphate flame retardants in leachates from six municipal landfills across China[J]. Chemosphere, 2019, 218: 836-844. doi: 10.1016/j.chemosphere.2018.11.150
[89] WANG B, YAO Y M, CHEN H, et al. Per- and polyfluoroalkyl substances and the contribution of unknown precursors and short-chain (C2–C3) perfluoroalkyl carboxylic acids at solid waste disposal facilities[J]. Science of the Total Environment, 2020, 705: 135832. doi: 10.1016/j.scitotenv.2019.135832
[90] 王坤, 赵玉杰, 庄涛. 生活垃圾渗滤液中43种新兴有机污染物分布特征与环境风险[J]. 环境污染与防治, 2020, 42(12): 1523-1530. doi: 10.15985/j.cnki.1001-3865.2020.12.016 WANG K, ZHAO Y J, ZHUANG T. Distribution and environmental risks of 43 emerging contaminants in municipal solid waste leachate[J]. Environmental Pollution and Control, 2020, 42(12): 1523-1530(in Chinese). doi: 10.15985/j.cnki.1001-3865.2020.12.016
[91] LI X N, WANG P L, CHU S Q, et al. The variation of antibiotic resistance genes and their links with microbial communities during full-scale food waste leachate biotreatment processes[J]. Journal of Hazardous Materials, 2021, 416: 125744. doi: 10.1016/j.jhazmat.2021.125744
[92] QIU L B, LI H, XUE X D, et al. Distribution and removal of antibiotic resistance genes in a landfill leachate treatment process[J]. Chemistry and Ecology, 2022, 38(10): 935-948. doi: 10.1080/02757540.2022.2129624
[93] YANG X T, CHEN C T, ZHANG T, et al. Low-cost mineral packing materials improve Dom and micropollutants removal from landfill leachate in ozonation bubble columns: Insights into the enhancement mechanisms and applicability of surrogate-based monitoring[J]. Chemical Engineering Journal, 2023, 458: 141461. doi: 10.1016/j.cej.2023.141461
[94] SHI J H, WANG B H, LI X N, et al. Distinguishing removal and regrowth potential of antibiotic resistance genes and antibiotic resistant bacteria on microplastics and in leachate after chlorination or Fenton oxidation[J]. Journal of Hazardous Materials, 2022, 430: 128432. doi: 10.1016/j.jhazmat.2022.128432
[95] YANG C, FU T L, WANG H, et al. Removal of organic pollutants by effluent recirculation constructed wetlands system treating landfill leachate[J]. Environmental Technology & Innovation, 2021, 24: 101843.
[96] WANG H W, ZHANG C, WANG Y N, et al. Simultaneous degradation of refractory organics, antibiotics and antibiotic resistance genes from landfill leachate concentrate by GAC/O3[J]. Journal of Cleaner Production, 2022, 380: 135016.
[97] LI J Y, ZHAO L, QIN L L, et al. Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo–Fenton processes[J]. Chemosphere, 2016, 146: 442-449. doi: 10.1016/j.chemosphere.2015.12.069
[98] ZHANG C, YI P, KE N, et al. Remediation of perfluoroalkyl substances in landfill leachates by electrocoagulation[J]. CLEAN–Soil, Air, Water, 2014, 42(12): 1740-1743. doi: 10.1002/clen.201300563
[99] HE R, TIAN B H, ZHANG Q Q, et al. Effect of Fenton oxidation on biodegradability, biotoxicity and dissolved organic matter distribution of concentrated landfill leachate derived from a membrane process[J]. Waste Management, 2015, 38: 232-239. doi: 10.1016/j.wasman.2015.01.006
[100] YE M, SUN M M, CHEN X, et al. Feasibility of sulfate-calcined eggshells for removing pathogenic bacteria and antibiotic resistance genes from landfill leachates[J]. Waste Management, 2017, 63: 275-283. doi: 10.1016/j.wasman.2017.03.005
[101] ZHANG C H, JIANG S, TANG J W, et al. Adsorptive performance of coal based magnetic activated carbon for perfluorinated compounds from treated landfill leachate effluents[J]. Process Safety and Environmental Protection, 2018, 117: 383-389. doi: 10.1016/j.psep.2018.05.016
[102] 侯昌成, 赵玲, 尹平河, 等. 垃圾渗滤液中典型内分泌干扰物质(EDCs)细胞毒性分析[J]. 生态毒理学报, 2017, 12(3): 327-335. HOU C C, ZHAO L, YIN P H, et al. Cytotoxicity analysis of typical endocrine disrupting chemicals (EDCs)in landfill leachate[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 327-335(in Chinese).