[1] SHEN Q B, WANG Z Y, YU Q, et al. Removal of tetracycline from an aqueous solution using Manganese dioxide modified biochar derived from Chinese herbal medicine residues[J]. Environmental Research, 2020, 183: 109195. doi: 10.1016/j.envres.2020.109195
[2] PAN S F, ZHU M P, CHEN J P, et al. Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane–Implications for antibiotics recovery[J]. Separation and Purification Technology, 2015, 153: 76-83. doi: 10.1016/j.seppur.2015.08.034
[3] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
[4] WANG H L, CHEN T H, CHEN D, et al. Sulfurized oolitic hematite as a heterogeneous Fenton-like catalyst for tetracycline antibiotic degradation[J]. Applied Catalysis B:Environmental, 2020, 260: 118203. doi: 10.1016/j.apcatb.2019.118203
[5] 贾世杰, 高会旺, 祁建华. 海洋环境中抗生素抗性基因研究进展[J]. 环境化学, 2023, 42(3): 792-804. doi: 10.7524/j.issn.0254-6108.2022103101 JIA S J, GAO H W, QI J H. Antibiotic resistance genes in marine environment–a review[J]. Environmental Chemistry, 2023, 42(3): 792-804 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022103101
[6] CHEN Y L, JIANG C X, WANG Y L, et al. Sources, environmental fate, and ecological risks of antibiotics in sediments of Asia’s longest river: A whole-basin investigation[J]. Environmental Science & Technology, 2022, 56(20): 14439-14451.
[7] WANG C, ZHAO Y P, LIU S, et al. Contamination, distribution, and risk assessment of antibiotics in the urban surface water of the Pearl River in Guangzhou, South China[J]. Environmental Monitoring and Assessment, 2021, 193(2): 98. doi: 10.1007/s10661-021-08887-5
[8] GU J Y, CHEN C Y, HUANG X Y, et al. Occurrence and risk assessment of tetracycline antibiotics in soils and vegetables from vegetable fields in Pearl River Delta, South China[J]. Science of the Total Environment, 2021, 776: 145959. doi: 10.1016/j.scitotenv.2021.145959
[9] 张晶晶, 陈娟, 王沛芳, 等. 中国典型湖泊四大类抗生素污染特征[J]. 中国环境科学, 2021, 41(9): 4271-4283 doi: 10.19674/j.cnki.issn1000-6923.20210510.007 ZHANG J J, CHEN J, WANG P F, et al. Pollution characteristics of four-type antibiotics in typical lakes in China[J]. China Environmental Science, 2021, 41(9): 4271-4283(in Chinese) doi: 10.19674/j.cnki.issn1000-6923.20210510.007
[10] ZHONG S F, YANG B, XIONG Q, et al. Hydrolytic transformation mechanism of tetracycline antibiotics: Reaction kinetics, products identification and determination in WWTPs[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113063. doi: 10.1016/j.ecoenv.2021.113063
[11] LEICHTWEIS J, VIEIRA Y, WELTER N, et al. A review of the occurrence, disposal, determination, toxicity and remediation technologies of the tetracycline antibiotic[J]. Process Safety and Environmental Protection, 2022, 160: 25-40. doi: 10.1016/j.psep.2022.01.085
[12] DZOMBA P, ZARANYIKA M F. Degradation of tetracycline in tropical river ecosystems: Generation and dissipation of metabolites;kinetic and thermodynamic parameters[J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 2115-2136. doi: 10.1007/s11144-022-02249-z
[13] 张业旺, 谭强, 刘瑞江, 等. 青霉素酰化酶制备6-APA的研究进展[J]. 中国抗生素杂志, 2008, 33(7): 385-391. doi: 10.13461/j.cnki.cja.004238 ZHANG Y W, TAN Q, LIU R J, et al. Progress in enzymatic production of 6-aminopenicillanic acid with penicillin acylase[J]. Chinese Journal of Antibiotics, 2008, 33(7): 385-391 (in Chinese). doi: 10.13461/j.cnki.cja.004238
[14] HALLING-SØRENSEN B, SENGELØV G, TJØRNELUND J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263-271. doi: 10.1007/s00244-001-0017-2
[15] ZHU P X, ZHOU L X, JIANG K Z, et al. Diastereomer recognition of three pairs of tetracyclines by electrospray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2022, 36(2): e9221. doi: 10.1002/rcm.9221
[16] ŠALA M, KOČAR D, LUKEŽIČ T, et al. Rapid identification of atypical tetracyclines using tandem mass spectrometric fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2015, 29(17): 1556-1562. doi: 10.1002/rcm.7252
[17] SHEN F, XU Y J, WANG Y, et al. Rapid and ultra-trace levels analysis of 33 antibiotics in water by on-line solid-phase extraction with ultra-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography. A, 2022, 1677: 463304. doi: 10.1016/j.chroma.2022.463304
[18] ŁUKASZEWICZ P, BIAŁK-BIELIŃSKA A, DOŁŻONEK J, et al. A new approach for the extraction of tetracyclines from soil matrices: Application of the microwave-extraction technique[J]. Analytical and Bioanalytical Chemistry, 2018, 410(6): 1697-1707. doi: 10.1007/s00216-017-0815-7
[19] VIDAL J L M, AGUILERA-LUIZ M D, ROMERO-GONZÁLEZ R, et al. Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2009, 57(5): 1760-1767. doi: 10.1021/jf8034572
[20] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, et al. Solid-phase extraction of organic compounds: A critical review (Part Ⅰ)[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 641-654. doi: 10.1016/j.trac.2015.08.015
[21] ANDRADE-EIROA A, CANLE M, LEROY-CANCELLIERI V, et al. Solid-phase extraction of organic compounds: A critical review (Part Ⅱ)[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 655-667. doi: 10.1016/j.trac.2015.08.014
[22] 廖杰, 李青松. 测定13种抗生素的固相萃取-高效液相色谱串联质谱法优化与应用[J]. 环境化学, 2022, 41(5): 1538-1547. doi: 10.7524/j.issn.0254-6108.2022021302 LIAO J, LI Q S. Optimization and application of solid phase extraction-high performance liquid chromatography-tandem mass spectrometry for determination of 13 antibiotics[J]. Environmental Chemistry, 2022, 41(5): 1538-1547 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022021302
[23] JIA A, XIAO Y, HU J Y, et al. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography–electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2009, 1216(22): 4655-4662. doi: 10.1016/j.chroma.2009.03.073
[24] ZHENG W L, ZHANG L F, ZHANG K Y, et al. Determination of tetracyclines and their epimers in agricultural soil fertilized with swine manure by ultra-high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Integrative Agriculture, 2012, 11(7): 1189-1198. doi: 10.1016/S2095-3119(12)60114-2
[25] ZHOU J L, MASKAOUI K, LUFADEJU A. Optimization of antibiotic analysis in water by solid-phase extraction and high performance liquid chromatography–mass spectrometry/mass spectrometry[J]. Analytica Chimica Acta, 2012, 731: 32-39. doi: 10.1016/j.aca.2012.04.021
[26] de ZAN M M, GIL GARCÍA M D, CULZONI M J, et al. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms[J]. Journal of Chromatography A, 2008, 1179(2): 106-114. doi: 10.1016/j.chroma.2007.11.091
[27] 杨艳红, 王欣, 白璇. 引黄生态补水对官厅水库水质时空分布影响及污染源解析[J]. 水资源开发与管理, 2022, 8(3): 61-69. doi: 10.16616/j.cnki.10-1326/TV.2022.03.12 Yang Y H, Wang X, Bai X. Influence of ecological water supplement of the Yellow River Diversion on time and space distribution of Guanting Reservoir water quality and analysis of pollution sources[J]. Water Resources Development and Management, 2022, 8(3): 61-69 (in Chinese). doi: 10.16616/j.cnki.10-1326/TV.2022.03.12
[28] ZHAO W J, ZUO H Y, GUO Y, et al. Porous covalent triazine-terphenyl polymer as hydrophilic–lipophilic balanced sorbent for solid phase extraction of tetracyclines in animal derived foods[J]. Talanta, 2019, 201: 426-432. doi: 10.1016/j.talanta.2019.04.010
[29] SHAO B, JIA X F, WU Y N, et al. Multi-class confirmatory method for analyzing trace levels of tetracyline and quinolone antibiotics in pig tissues by ultra-performance liquid chromatography coupled with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(21): 3487-3496. doi: 10.1002/rcm.3236
[30] LINGHU K L, WU Q X, ZHANG J, et al. Occurrence, distribution and ecological risk assessment of antibiotics in Nanming River: Contribution from wastewater treatment plant and implications of urban river syndrome[J]. Process Safety and Environmental Protection, 2023, 169: 428-436. doi: 10.1016/j.psep.2022.11.025
[31] WU X F, WEI Y S, ZHENG J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting[J]. Bioresource Technology, 2011, 102(10): 5924-5931. doi: 10.1016/j.biortech.2011.03.007
[32] JI L L, WAN Y Q, ZHENG S R, et al. Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: Implication for the relative importance of black carbon to soil sorption[J]. Environmental Science & Technology, 2011, 45(13): 5580-5586.
[33] 徐龙凤, 魏群山, 吕强, 等. 水体模拟颗粒物对四环素的吸附特性及基本规律[J]. 环境科学, 2018, 39(4): 1668-1676. doi: 10.13227/j.hjkx.201707225 XU L F, WEI Q S, LÜ Q, et al. Adsorption of tetracycline on simulated suspended particles in water[J]. Environmental Science, 2018, 39(4): 1668-1676 (in Chinese). doi: 10.13227/j.hjkx.201707225