[1] FRUMIN G T, GILDEEVA I M. Eutrophication of water bodies: A global environmental problem[J]. Russian Journal of General Chemistry, 2015, 84(13): 2483-2488.
[2] 岳佳妮, 肖峰, 李一鸣. 不同有机物对含藻水体混凝效果和絮体特性的影响[J]. 环境工程学报, 2023, 17(10): 3333-3341.
[3] SUNDA W G, GRANELI E, GOBLER C J. Positive feedback and the development and persistence of ecosystem disruptive algal blooms[J]. Journal of Phycology, 2006, 42(5): 963-974. doi: 10.1111/j.1529-8817.2006.00261.x
[4] TREUER G, KIRCHHOFF C, LEMOS M C, et al. Challenges of managing harmful algal blooms in US drinking water systems[J]. Nature Sustainability, 2021, 4(11): 958-964. doi: 10.1038/s41893-021-00770-y
[5] 马敏, 刘锐平, 刘会娟, 等. 预氯化对铝盐混凝铜绿微囊藻过程中溶解性有机物和残余铝的影响[J]. 环境科学学报, 2014, 34(1): 73-78.
[6] QI J, LAN H, LIU H, et al. Simultaneous surface-adsorbed organic matter desorption and cell integrity maintenance by moderate prechlorination to enhance Microcystis aeruginosa removal in KMnO(4)Fe(II) process[J]. Water Research, 2016, 105: 551-558. doi: 10.1016/j.watres.2016.09.042
[7] HE X, LIU Y L, CONKLIN A, et al. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment[J]. Harmful Algae, 2016, 54: 174-193. doi: 10.1016/j.hal.2016.01.001
[8] 曹琳, 刘煌, 许国静, 王图锦. 壳聚糖-镧改性膨润土的制备及除藻除磷性能[J]. 环境工程学报, 2021, 15(8): 2555-2562. doi: 10.12030/j.cjee.202104006
[9] BADIAA GHERNAOUT D G A S. Algae and cyanotoxins removal by coagulation/flocculation: A review[J]. Desalination and Water Treatment, 2010, 20: 133-143. doi: 10.5004/dwt.2010.1202
[10] QI J, LAN H, MIAO S, et al. KMnO4-Fe(II) pretreatment to enhance Microcystis aeruginosa removal by aluminum coagulation: Does it work after long distance transportation?[J]. Water Research, 2016, 88: 127-134. doi: 10.1016/j.watres.2015.10.004
[11] ODJADJARE E, MUTANDA T, CHEN Y-F, et al. Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production[J]. Water, 2018, 10(8). doi. org/10.3390/w10080977.ODJADJARE E, MUTANDA T, CHEN Y-F, et al. Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production[J]. Water, 2018, 10(8). doi.org/10.3390/w10080977.
[12] QI J, LAN H, LIU R, et al. Prechlorination of algae-laden water: The effects of transportation time on cell integrity, algal organic matter release, and chlorinated disinfection byproduct formation[J]. Water Research, 2016, 102: 221-228. doi: 10.1016/j.watres.2016.06.039
[13] HENDERSON R K, PARSONS S A, JEFFERSON B. The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae[J]. Water Research, 2010, 44(12): 3617-3624. doi: 10.1016/j.watres.2010.04.016
[14] 徐磊, 俞文正, 梁亮, 等. 天然有机物对混凝效果影响机制及絮体特性分析[J]. 环境科学, 2013, 34(11): 4290-4294.
[15] GAD A A M, EL-TAWEL S. Effect of pre-oxidation by chlorine/permanganate on surface water characteristics and algal toxins[J]. Desalination and Water Treatment, 2015, 57(38): 17922-17934.
[16] 石颖, 马军, 蔡伟民, 等. 湖泊、水库水的强化混凝除藻的试验研究[J]. 环境科学学报, 2001, 02: 251-253. doi: 10.3321/j.issn:0253-2468.2001.02.026
[17] CHOW J C U M M D C. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: flocculant demand of different species and the impact of DOC[J]. Journal of Water Services Research and Technology-Aqua, 2000, 49(2): 89-101.
[18] SHEN Q, ZHU J, CHENG L, et al. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation[J]. Desalination, 2011, 271(1-3): 236-240. doi: 10.1016/j.desal.2010.12.039
[19] BIDLE K D. Programmed Cell Death in Unicellular Phytoplankton[J]. Current Biology, 2016, 26(13): R594-R607. doi: 10.1016/j.cub.2016.05.056
[20] 梁文辉, 法芸, 王明林. 高效阴离子交换色谱积分脉冲安培法测定蓝藻细胞培养液中的蔗糖和甘油葡糖苷[J]. 化学分析计量, 2014, 23(S1): 9-12.
[21] DUDLE J, EDZWALD J. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation[J]. Journal of Water Supply:Research and Technology - AQUA, 2002, 51: 307-318. doi: 10.2166/aqua.2002.0027
[22] VANDAMME D, FOUBERT I, FRAEYE I, et al. Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation[J]. Bioresource Technology, 2012, 124: 508-511. doi: 10.1016/j.biortech.2012.08.121
[23] CLASEN J, MISCHKE U, DRIKAS M, et al. An improved method for detecting electrophoretic mobility of algae during the destabilisation process of flocculation: Flocculant demand of different species and the impact of DOC[J]. Journal of Water Supply:Research and Technology - AQUA, 2000, 49: 89-101. doi: 10.2166/aqua.2000.0008
[24] BERNHARDT H, HOYER O, SCHELL H, et al. Reaction mechanisms involved in the influence of algogenic organic matter on flocculation, F, 1985 [C
[25] MARUNGRUENG K, PAVASANT P. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera[J]. Journal of Environmental Management, 2006, 78(3): 268-274. doi: 10.1016/j.jenvman.2005.04.022
[26] SALIMA A, BENAOUDA B, NOUREDDINE B, et al. Application of Ulva lactuca and Systoceira stricta algae-based activated carbons to hazardous cationic dyes removal from industrial effluents[J]. Water Research, 2013, 47(10): 3375-3388. doi: 10.1016/j.watres.2013.03.038
[27] ELMORE S. Apoptosis: A review of programmed cell death[J]. Toxicologic Pathology, 2007, 35(4): 495-516. doi: 10.1080/01926230701320337