[1] MA B, WANG S Y, CAO S B, et al. Biological nitrogen removal from sewage via anammox: Recent advances[J]. Bioresource Technology, 2016, 200: 981-990. doi: 10.1016/j.biortech.2015.10.074
[2] 黄京, 张树军, 韩晓宇, 等. PN-ANA技术处理热水解厌氧消化液工艺的启动及运行调试[J]. 环境工程学报, 2022, 16(6): 2080-2087. doi: 10.12030/j.cjee.202102078
[3] 班玮璘, 田立红, 李泽莹, 等. 短程硝化-厌氧氨氧化耦合反硝化系统处理集便器污水[J]. 环境工程学报, 2023, 17(4): 1128-1137.
[4] LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences-an application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
[5] LI J, LI J, PENG Y, et al. Insight into the impacts of organics on anammox and their potential linking to system performance of sewage partial nitrification-anammox (PN/A): A critical review[J]. Bioresource Technology, 2020, 300: 122655. doi: 10.1016/j.biortech.2019.122655
[6] YUAN Q, JIA Z, ROOTS P, et al. A strategy for fast anammox biofilm formation under mainstream conditions[J]. Chemosphere, 2023, 318: 137955. doi: 10.1016/j.chemosphere.2023.137955
[7] YANG Y D, ZHANG L, CHENG J, et al. Microbial community evolution in partial nitritation/anammox process: From sidestream to mainstream[J]. Bioresource Technology, 2018, 251: 327-333. doi: 10.1016/j.biortech.2017.12.079
[8] ZHAO Y, LI J, LIU Q, et al. Fast start-up and stable operation of mainstream anammox without inoculation in an A(2)/O process treating low COD/N real municipal wastewater[J]. Water Research, 2023, 231: 119598. doi: 10.1016/j.watres.2023.119598
[9] SU Y, PENG Y, WANG J, et al. Rapid enrichment of anammox bacteria and transformation to partial denitrification/anammox with nitrification/denitrification sludge[J]. The Science of the Total Environment, 2023, 856: 158973. doi: 10.1016/j.scitotenv.2022.158973
[10] CAI W, CAI L, ZHAO J, et al. Prokaryotic community interchange between distinct microhabitats causes community pressure on anammox biofilm development[J]. Water Research, 2023, 233: 119726. doi: 10.1016/j.watres.2023.119726
[11] PAULA A J, HWANG G, KOO H. Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization[J]. Nature Communications, 2020, 11(1): 1354. doi: 10.1038/s41467-020-15165-4
[12] ZHAO Q, LI J, DENG L, et al. From hybrid process to pure biofilm anammox process: Suspended sludge biomass management contributing to high-level anammox enrichment in biofilms[J]. Water Research, 2023, 236: 119959. doi: 10.1016/j.watres.2023.119959
[13] LIU Q, LI J, ZHAO Y, et al. Mechanism of suspended sludge impact on anammox enrichment in anoxic biofilm through long term operation and microbial analysis[J]. Water Research, 2023, 229: 119412. doi: 10.1016/j.watres.2022.119412
[14] YANG S, PENG Y, ZHANG Q, et al. Biofilm phenotypes and internal community succession determines distinct growth of anammox bacteria in functional anammox biofilms[J]. Bioresource Technology, 2022, 349: 126893. doi: 10.1016/j.biortech.2022.126893
[15] RICE E W, BRIDGEWATER L, ASSOCIATION A P H. Standard method for the examination of water and wastewater[D]. American Public Health Association Washington, 2012.
[16] XU W, ZHANG T, WAN J, et al. Phosphorus recovery via the formation of hydroxyapatite crystals at various nitrogen loading rate in an anammox-based UAFB[J]. Bioresource Technology, 2021, 326: 124628. doi: 10.1016/j.biortech.2020.124628
[17] YANG S, PENG Y, ZHANG L, et al. Autotrophic nitrogen removal in an integrated fixed-biofilm activated sludge (IFAS) reactor: Anammox bacteria enriched in the flocs have been overlooked[J]. Bioresource Technology, 2019, 288: 121512. doi: 10.1016/j.biortech.2019.121512
[18] PELLICER-NACHER C, SMETS B F. Structure, composition, and strength of nitrifying membrane-aerated biofilms[J]. Water Research, 2014, 57: 151-161. doi: 10.1016/j.watres.2014.03.026
[19] MIAO L, WANG S, CAO T, et al. Advanced nitrogen removal from landfill leachate via Anammox system based on Sequencing Biofilm Batch Reactor (SBBR): Effective protection of biofilm[J]. Bioresource Technology, 2016, 220: 8-16. doi: 10.1016/j.biortech.2016.06.131
[20] YU G H, HE P J, SHAO L M. Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis[J]. Water Research, 2010, 44(3): 797-806. doi: 10.1016/j.watres.2009.10.021
[21] JIA F, YANG Q, HAN J, et al. Modeling optimization and evaluation of tightly bound extracellular polymeric substances extraction by sonication[J]. Applied Microbiology and Biotechnology, 2016, 100(19): 8485-8494. doi: 10.1007/s00253-016-7748-5
[22] SHIMAMURA M, NISHIYAMA T, SHIGETOMO H, et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture[J]. Applied and Environmental Microbiology, 2007, 73(4): 1065-1072. doi: 10.1128/AEM.01978-06
[23] GAO D, WANG X, LIANG H, et al. Anaerobic ammonia oxidizing bacteria: Ecological distribution, metabolism, and microbial interactions[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 29-43.
[24] KINDAICHI T, YURI S, OZAKI N, et al. Ecophysiological role and function of uncultured Chloroflexi in an anammox reactor[J]. Water Science and Technology, 2012, 66(12): 2556-2561. doi: 10.2166/wst.2012.479
[25] ALI M, SHAW D R, ZHANG L, et al. Aggregation ability of three phylogenetically distant anammox bacterial species[J]. Water Research, 2018, 143: 10-18. doi: 10.1016/j.watres.2018.06.007
[26] ALI M, OSHIKI M, AWATA T, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium 'Candidatus Jettenia caeni'[J]. Environmental Microbiology, 2015, 17(6): 2172-2189. doi: 10.1111/1462-2920.12674
[27] AZARI M, LüBKEN M, DENECKE M. Simulation of simultaneous anammox and denitrification for kinetic and physiological characterization of microbial community in a granular biofilm system[J]. Biochemical Engineering Journal, 2017, 127: 206-216. doi: 10.1016/j.bej.2017.09.002
[28] ZHANG L, NARITA Y, GAO L, et al. Maximum specific growth rate of anammox bacteria revisited[J]. Water Research, 2017, 116: 296-303. doi: 10.1016/j.watres.2017.03.027
[29] XIAO R, ZHU W, XU S, et al. Low strength wastewater anammox start-up by stepwise decrement in influent nitrogen: Biofilm formation mechanism and mathematical modelling[J]. Environment International, 2022, 158: 106929. doi: 10.1016/j.envint.2021.106929
[30] LIU Y, NIU Q, WANG S, et al. Upgrading of the symbiosis of Nitrosomanas and anammox bacteria in a novel single-stage partial nitritation-anammox system: Nitrogen removal potential and Microbial characterization[J]. Bioresource Technology, 2017, 244(Pt 1): 463-472.
[31] WANG J, PENG Y, ZHANG Q, et al. Advanced nitrogen removal in a single return anaerobic/aerobic/anoxic/aerobic (A(n)OAO) bioreactor treating municipal wastewater through hydroxylamine addition: Performance and microbial community[J]. Bioresource Technology, 2022, 351: 126926. doi: 10.1016/j.biortech.2022.126926
[32] ZHAO J, LIU T, MENG J, et al. Ammonium concentration determines oxygen penetration depth to impact the suppression of nitrite-oxidizing bacteria inside partial nitritation and anammox biofilms[J]. Chemical Engineering Journal, 2023, 455: 140738. doi: 10.1016/j.cej.2022.140738
[33] SUN Y P, GUAN Y T, ZENG D F, et al. Metagenomics-based interpretation of AHLs-mediated quorum sensing in Anammox biofilm reactors for low-strength wastewater treatment[J]. Chemical Engineering Journal, 2018, 344: 42-52. doi: 10.1016/j.cej.2018.03.047
[34] 李祥, 黄勇, 袁怡, 等. 不同泥源对厌氧氨氧化反应器启动的影响[J]. 环境工程学报, 2012, 6(7): 2143-2148.
[35] YANG S, PENG Y Z, ZHANG S, et al. Carrier type induces anammox biofilm structure and the nitrogen removal pathway: Demonstration in a full-scale partial nitritation/anammox process[J]. Bioresource Technology, 2021, 334: 125249. doi: 10.1016/j.biortech.2021.125249
[36] LV Y T, JU K, WANG L, et al. In situ probing of microbial activity within anammox granular biomass with microelectrodes[J]. Journal of Bioscience and Bioengineering, 2016, 121(4): 450-456. doi: 10.1016/j.jbiosc.2015.08.015