[1] |
WATTS C, SUN J X, JONES P D, et al. Monthly variations of unregulated brominated disinfection by-products in chlorinated water are correlated with total bromine[J]. Eco-Environment & Health, 2022, 1(3): 147-155.
|
[2] |
PAL A, HE Y L, JEKEL M, et al. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle[J]. Environment International, 2014, 71: 46-62. doi: 10.1016/j.envint.2014.05.025
|
[3] |
丁文川, 姚瑜佳, 曾晓岚, 等. 垃圾填埋场中新型污染物的研究进展[J]. 环境化学, 2018, 37(10): 2267-2282. doi: 10.7524/j.issn.0254-6108.2017112902
DING W C, YAO Y J, ZENG X L, et al. Emerging contaminants in municipal landfills: A review[J]. Environmental Chemistry, 2018, 37(10): 2267-2282 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017112902
|
[4] |
PERVEEN S, HASHMI I, KHAN R. Evaluation of genotoxicity and hematological effects in common carp (Cyprinus carpio) induced by disinfection by-products[J]. Journal of Water and Health, 2019, 17(5): 762-776. doi: 10.2166/wh.2019.261
|
[5] |
CORTÉS C, MARCOS R. Genotoxicity of disinfection byproducts and disinfected waters: A review of recent literature[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2018, 831: 1-12. doi: 10.1016/j.mrgentox.2018.04.005
|
[6] |
李永珍, 何更生, 詹铭, 等. 上海市水源水及出厂水中卤甲烷、卤乙酸、卤乙腈类消毒副产物含量及健康风险评估[J]. 环境与职业医学, 2021, 38(5): 460-466.
LI Y Z, HE G S, ZHAN M, et al. Levels and health risk assessments of halomethanes, haloacetic acids, and haloacetonitriles disinfection by-products in source and finished water in Shanghai[J]. Journal of Environmental and Occupational Medicine, 2021, 38(5): 460-466 (in Chinese).
|
[7] |
KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection byproducts[J]. Environmental Science & Technology, 2006, 40(23): 7175-7185.
|
[8] |
MIAN H R, HU G J, HEWAGE K, et al. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review[J]. Water Research, 2018, 147: 112-131. doi: 10.1016/j.watres.2018.09.054
|
[9] |
ZHAO Y L, ANICHINA J, LU X F, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection[J]. Water Research, 2012, 46(14): 4351-4360. doi: 10.1016/j.watres.2012.05.032
|
[10] |
PRESSMAN J G, RICHARDSON S D, SPETH T F, et al. Concentration, chlorination, and chemical analysis of drinking water for disinfection byproduct mixtures health effects research: U. S. EPA’s four lab study[J]. Environmental Science & Technology, 2010, 44(19): 7184-7192.
|
[11] |
ROOK J J. Formation of haloforms during chlorination of natureal waters[J]. Water treatment Examination, 1974, 23: 234-243.
|
[12] |
GRELLIER J, RUSHTON L, BRIGGS D J, et al. Assessing the human health impacts of exposure to disinfection by-products—a critical review of concepts and methods[J]. Environment International, 2015, 78: 61-81. doi: 10.1016/j.envint.2015.02.003
|
[13] |
齐慧颖, 郭新彪. 氯化消毒副产物与膀胱癌关系研究进展[J]. 职业与健康, 2018, 34(24): 3453-3457.
QI H Y, GUO X B. Research progress of relation between chlorination disinfection by-products and bladder cancer[J]. Occupation and Health, 2018, 34(24): 3453-3457 (in Chinese).
|
[14] |
EVLAMPIDOU I, FONT-RIBERA L, ROJAS-RUEDA D, et al. Trihalomethanes in drinking water and bladder cancer burden in the European union[J]. Environmental Health Perspectives, 2020, 128(1): 17001. doi: 10.1289/EHP4495
|
[15] |
USMAN M, KUCKELKORN J, KÄMPFE A, et al. Identification of disinfection by-products (DBP) in thermal water swimming pools applying non-target screening by LC-/ GC-HRMS[J]. Journal of Hazardous Materials, 2023, 449: 130981. doi: 10.1016/j.jhazmat.2023.130981
|
[16] |
WANG X X, LIU B M, LU M F, et al. Characterization of algal organic matter as precursors for carbonaceous and nitrogenous disinfection byproducts formation: Comparison with natural organic matter[J]. Journal of Environmental Management, 2021, 282: 111951. doi: 10.1016/j.jenvman.2021.111951
|
[17] |
YANG M T, ZHANG X R. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii[J]. Environmental Science & Technology, 2013, 47(19): 10868-10876.
|
[18] |
RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2022, 94(1): 382-416. doi: 10.1021/acs.analchem.1c04640
|
[19] |
POSTIGO C, EMILIANO P, BARCELÓ D, et al. Chemical characterization and relative toxicity assessment of disinfection byproduct mixtures in a large drinking water supply network[J]. Journal of Hazardous Materials, 2018, 359: 166-173. doi: 10.1016/j.jhazmat.2018.07.022
|
[20] |
LEE J, HA K T, ZOH K D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods[J]. Science of the Total Environment, 2009, 407(6): 1990-1997. doi: 10.1016/j.scitotenv.2008.11.021
|
[21] |
TÉLLEZ TOVAR S S, RODRÍGUEZ SUSA M. Cancer risk assessment from exposure to trihalomethanes in showers by inhalation[J]. Environmental Research, 2021, 196: 110401. doi: 10.1016/j.envres.2020.110401
|
[22] |
MAHATO J K, GUPTA S K. Advanced oxidation of Trihalomethane (THMs) precursors and season-wise multi-pathway human carcinogenic risk assessment in Indian drinking water supplies[J]. Process Safety and Environmental Protection, 2022, 159: 996-1007. doi: 10.1016/j.psep.2022.01.066
|
[23] |
YE J, NI J W, TIAN F X, et al. Toxicity effects of disinfection byproduct chloroacetic acid to Microcystis aeruginosa: Cytotoxicity and mechanisms[J]. Journal of Environmental Sciences, 2023, 129: 229-239. doi: 10.1016/j.jes.2022.09.023
|
[24] |
CUI H J, CHEN B Y, JIANG Y L, et al. Toxicity of 17 disinfection by-products to different trophic levels of aquatic organisms: Ecological risks and mechanisms[J]. Environmental Science & Technology, 2021, 55(15): 10534-10541.
|
[25] |
MARSÀ A, CORTÉS C, HERNÁNDEZ A, et al. Hazard assessment of three haloacetic acids, as byproducts of water disinfection, in human urothelial cells[J]. Toxicology and Applied Pharmacology, 2018, 347: 70-78. doi: 10.1016/j.taap.2018.04.004
|
[26] |
LU G H, QIN D H, WANG Y H, et al. Single and combined effects of selected haloacetonitriles in a human-derived hepatoma line[J]. Ecotoxicology and Environmental Safety, 2018, 163: 417-426. doi: 10.1016/j.ecoenv.2018.07.104
|
[27] |
XUE P, WANG H H, YANG L L, et al. NRF2-ARE signaling is responsive to haloacetonitrile-induced oxidative stress in human keratinocytes[J]. Toxicology and Applied Pharmacology, 2022, 450: 116163. doi: 10.1016/j.taap.2022.116163
|
[28] |
LIVIAC D, CREUS A, MARCOS R. Genotoxicity analysis of two halonitromethanes, a novel group of disinfection by-products (DBPs), in human cells treated in vitro[J]. Environmental Research, 2009, 109(3): 232-238. doi: 10.1016/j.envres.2008.12.009
|
[29] |
YIN J B, WU B, ZHANG X X, et al. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method[J]. Chemosphere, 2017, 185: 20-28. doi: 10.1016/j.chemosphere.2017.06.116
|
[30] |
LI J B, ZHANG H F, HAN Y N, et al. Cytotoxicity and genotoxicity assays of halobenzoquinones disinfection byproducts using different human cell lines[J]. Environmental and Molecular Mutagenesis, 2020, 61(5): 526-533. doi: 10.1002/em.22369
|
[31] |
LI J H, MOE B, LIU Y M, et al. Halobenzoquinone-induced alteration of gene expression associated with oxidative stress signaling pathways[J]. Environmental Science & Technology, 2018, 52(11): 6576-6584.
|
[32] |
HUANG R F, WANG W, QIAN Y C, et al. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water[J]. Analytical Chemistry, 2013, 85(9): 4520-4529. doi: 10.1021/ac400160r
|
[33] |
HU S Y, GONG T T, ZHU H T, et al. Formation and decomposition of new iodinated halobenzoquinones during chloramination in drinking water[J]. Environmental Science & Technology, 2020, 54(8): 5237-5248.
|
[34] |
HU S Y, CHEN X, ZHANG B B, et al. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1, 4-benzoquinone in chlorinated drinking water[J]. Journal of Hazardous Materials, 2022, 436: 129189. doi: 10.1016/j.jhazmat.2022.129189
|
[35] |
袁婷婷, 王新亮, 董慧峪. 5种卤代乙酰胺类消毒副产物对小鼠淋巴瘤细胞Tk基因致突变性研究[J]. 生态毒理学报, 2016, 11(1): 153-158.
YUAN T T, WANG X L, DONG H Y. Mutagenic analysis of five haloacetamides disinfection by-products in the tk gene of mouse lymphoma cells[J]. Asian Journal of Ecotoxicology, 2016, 11(1): 153-158 (in Chinese).
|
[36] |
TIAN X M, ZHOU Y X, WANG K J. Chloroacetaldehyde removal by zero valent iron enhanced hydrolytic acidification pretreatment[J]. Sustainable Chemistry and Pharmacy, 2020, 15: 100215. doi: 10.1016/j.scp.2020.100215
|
[37] |
张琦, 丁雪娇, 李怡, 等. 重庆生活饮用水二氧化氯消毒副产物水平及影响因素[J]. 中国卫生工程学, 2022, 21(6): 881-884,888.
ZHANG Q, DING X J, LI Y, et al. Chlorine dioxide disinfection byproducts and influencing factors in drinking water in Chongqing[J]. Chinese Journal of Public Health Engineering, 2022, 21(6): 881-884,888 (in Chinese).
|
[38] |
高乃云, 楚文海. 饮用水中氯代丙酮类消毒副产物的分析方法研究[J]. 水工业市场, 2011(7): 39-42.
GAO N Y, CHU W H. Study on analytical method of disinfection by-products of chloroacetone in drinking water[J]. Water-Industry Market, 2011(7): 39-42 (in Chinese).
|
[39] |
ZOU C, WANG M S, CHEN Y X, et al. Effects of different cathodic potentials on performance, microbial community structure and function for bioelectrochemical-stimulated dechlorination of 2, 4, 6-trichlorophenol in sediments[J]. Environmental Research, 2023, 216(Pt 1): 114477.
|
[40] |
ZHOU S Q, SHAO Y S, GAO N Y, et al. Chlorination and chloramination of tetracycline antibiotics: Disinfection by-products formation and influential factors[J]. Ecotoxicology and Environmental Safety, 2014, 107: 30-35. doi: 10.1016/j.ecoenv.2014.05.008
|
[41] |
McKIE M J, TAYLOR-EDMONDS L, ANDREWS S A, et al. Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity[J]. Water Research, 2015, 81: 196-207. doi: 10.1016/j.watres.2015.05.034
|
[42] |
XUE L R, LI X, ZHU X R, et al. Carbon tetrachloride exposure induces ovarian damage through oxidative stress and inflammatory mediated ovarian fibrosis[J]. Ecotoxicology and Environmental Safety, 2022, 242: 113859. doi: 10.1016/j.ecoenv.2022.113859
|
[43] |
WANG L Y, ZHANG X, CHEN S S, et al. Spatial variation of dissolved organic nitrogen in Wuhan surface waters: Correlation with the occurrence of disinfection byproducts during the COVID-19 pandemic[J]. Water Research, 2021, 198: 117138. doi: 10.1016/j.watres.2021.117138
|
[44] |
KOROTTA-GAMAGE S M, SATHASIVAN A. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process[J]. Chemosphere, 2017, 167: 120-138. doi: 10.1016/j.chemosphere.2016.09.097
|
[45] |
ZHAO Z M, SUN W J, RAY A K, et al. Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria[J]. Chemosphere, 2020, 245: 125669. doi: 10.1016/j.chemosphere.2019.125669
|
[46] |
GONSIOR M, POWERS L C, WILLIAMS E, et al. The chemodiversity of algal dissolved organic matter from lysed Microcystis aeruginosa cells and its ability to form disinfection by-products during chlorination[J]. Water Research, 2019, 155: 300-309. doi: 10.1016/j.watres.2019.02.030
|
[47] |
LI X, RAO N R H, LINGE K L, et al. Formation of algal-derived nitrogenous disinfection by-products during chlorination and chloramination[J]. Water Research, 2020, 183: 116047. doi: 10.1016/j.watres.2020.116047
|
[48] |
FANG C, HU J L, CHU W H, et al. Formation of CX3R-type disinfection by-products during the chlorination of protein: The effect of enzymolysis[J]. Chemical Engineering Journal, 2019, 363: 309-317. doi: 10.1016/j.cej.2019.01.143
|
[49] |
LU Y, SONG Z M, WANG C, et al. Combination of high resolution mass spectrometry and a halogen extraction code to identify chlorinated disinfection byproducts formed from aromatic amino acids[J]. Water Research, 2021, 190: 116710. doi: 10.1016/j.watres.2020.116710
|
[50] |
CHU W H, KRASNER S W, GAO N Y, et al. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water[J]. Environmental Science & Technology, 2016, 50(1): 388-396.
|
[51] |
GAO Y Q, ZHOU J Q, RAO Y Y, et al. Comparative study of degradation of ketoprofen and paracetamol by ultrasonic irradiation: Mechanism, toxicity and DBP formation[J]. Ultrasonics Sonochemistry, 2022, 82: 105906. doi: 10.1016/j.ultsonch.2021.105906
|
[52] |
ZHANG W J, DONG T Y, AI J, et al. Mechanistic insights into the generation and control of Cl-DBPs during wastewater sludge chlorination disinfection process[J]. Environment International, 2022, 167: 107389. doi: 10.1016/j.envint.2022.107389
|
[53] |
VILLANUEVA C M, CORDIER S, FONT-RIBERA L, et al. Overview of disinfection by-products and associated health effects[J]. Current Environmental Health Reports, 2015, 2(1): 107-115. doi: 10.1007/s40572-014-0032-x
|
[54] |
NIEUWENHUIJSEN M J, GRELLIER J, SMITH R, et al. The epidemiology and possible mechanisms of disinfection by-products in drinking water[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1904): 4043-4076.
|
[55] |
PEREIRA M A, KRAMER P M, CONRAN P B, et al. Effect of chloroform on dichloroacetic acid and trichloroacetic acid-induced hypomethylation and expression of the c- myc gene and on their promotion of liver and kidney tumors in mice[J]. Carcinogenesis, 2001, 22(9): 1511-1519. doi: 10.1093/carcin/22.9.1511
|
[56] |
LI Z G, LIU X Y, HUANG Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China[J]. Water Research, 2019, 157: 247-257. doi: 10.1016/j.watres.2019.03.072
|
[57] |
FISHER D, YONKOS L, ZIEGLER G, et al. Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana[J]. Water Research, 2014, 55: 233-244. doi: 10.1016/j.watres.2014.01.056
|
[58] |
ZHANG H, TANG W Z, CHEN Y S, et al. Disinfection threatens aquatic ecosystems[J]. Science, 2020, 368(6487): 146-147. doi: 10.1126/science.abb8905
|
[59] |
张亚凤, 程子波, 肖付耀, 等. 污水厂尾水中消毒副产物对小球藻的生长生理影响[J]. 环境化学, 2023, 42(2): 370-378. doi: 10.7524/j.issn.0254-6108.2021092703
ZHANG Y F, CHENG Z B, XIAO F Y, et al. Effects of disinfection by-products in sewage treatment plant effluent on the growth and physiology of Chlorella vulgaris[J]. Environmental Chemistry, 2023, 42(2): 370-378 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021092703
|
[60] |
CUI H J, ZHU X S, ZHU Y J, et al. Ecotoxicological effects of DBPs on freshwater phytoplankton communities in co-culture systems[J]. Journal of Hazardous Materials, 2022, 421: 126679. doi: 10.1016/j.jhazmat.2021.126679
|
[61] |
HU L L, SHAN K, LIN L Z, et al. Multi-year assessment of toxic genotypes and microcystin concentration in northern Lake Taihu, China[J]. Toxins, 2016, 8(1): 23. doi: 10.3390/toxins8010023
|
[62] |
MELO A, FERREIRA C, FERREIRA I M P L V O, et al. Acute and chronic toxicity assessment of haloacetic acids using Daphnia magna[J]. Journal of Toxicology and Environmental Health. Part A, 2019, 82(18): 977-989. doi: 10.1080/15287394.2019.1676959
|
[63] |
SONG W Y, WU K, WU X L, et al. The antiestrogen-like activity and reproductive toxicity of 2, 6-DCBQ on female zebrafish upon sub-chronic exposure[J]. Journal of Environmental Sciences, 2022, 117: 10-20. doi: 10.1016/j.jes.2021.11.012
|
[64] |
SUN H J, ZHANG Y, ZHANG J Y, et al. The toxicity of 2, 6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity[J]. Environmental Pollution, 2019, 245: 719-724. doi: 10.1016/j.envpol.2018.11.051
|
[65] |
XIAO C, WANG C, ZHANG Q W, et al. Transcriptomic analysis of adult zebrafish heart and brain in response to 2, 6-dichloro-1, 4-benzoquinone exposure[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112835. doi: 10.1016/j.ecoenv.2021.112835
|
[66] |
CHEN Y Y, XIAO L, GAO G Y, et al. 2, 5-dichloro-1, 4-benuinone exposure to zebrafish embryos/larvae causes neurodevelopmental toxicity[J]. Ecotoxicology and Environmental Safety, 2022, 243: 114007. doi: 10.1016/j.ecoenv.2022.114007
|
[67] |
CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Toxicological assessment of seven unregulated drinking water Disinfection By-products (DBPs) using the zebrafish embryo bioassay[J]. The Science of the Total Environment, 2020, 742: 140522. doi: 10.1016/j.scitotenv.2020.140522
|
[68] |
YU S L, LIN T, CHEN W, et al. The toxicity of a new disinfection by-product, 2, 2-dichloroacetamide (DCAcAm), on adult zebrafish (Danio rerio) and its occurrence in the chlorinated drinking water[J]. Chemosphere, 2015, 139: 40-46. doi: 10.1016/j.chemosphere.2015.05.079
|
[69] |
RANJAN J, MANDAL T, MANDAL D D. Environmental risk appraisement of disinfection by-products (DBPs) in plant model system: Allium cepa[J]. Environmental Science and Pollution Research International, 2019, 26(9): 8609-8622. doi: 10.1007/s11356-019-04262-7
|
[70] |
WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences, 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
|
[71] |
DONG Y, LI F, SHEN H J, et al. Evaluation of the water disinfection by-product dichloroacetonitrile-induced biochemical, oxidative, histopathological, and mitochondrial functional alterations: Subacute oral toxicity in rats[J]. Toxicology and Industrial Health, 2018, 34(3): 158-168. doi: 10.1177/0748233717744720
|
[72] |
MUELLNER M G, WAGNER E D, McCALLA K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2): 645-651.
|
[73] |
PAGÉ-LARIVIÈRE F, TREMBLAY A, CAMPAGNA C, et al. Low concentrations of bromodichloromethane induce a toxicogenomic response in porcine embryos in vitro[J]. Reproductive Toxicology, 2016, 66: 44-55. doi: 10.1016/j.reprotox.2016.09.010
|
[74] |
CHAVES R S, GUERREIRO C S, CARDOSO V V, et al. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidences and research priorities[J]. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 2019, 223: 53-61.
|
[75] |
HASSOUN E, CEARFOSS J, MAMADA S, et al. The effects of mixtures of dichloroacetate and trichloroacetate on induction of oxidative stress in livers of mice after subchronic exposure[J]. Journal of Toxicology and Environmental Health. Part A, 2014, 77(6): 313-323. doi: 10.1080/15287394.2013.864576
|
[76] |
WANG J, ZHANG H F, ZHENG X L, et al. In vitro toxicity and molecular interacting mechanisms of chloroacetic acid to catalase[J]. Ecotoxicology and Environmental Safety, 2020, 189: 109981. doi: 10.1016/j.ecoenv.2019.109981
|
[77] |
FAUSTINO-ROCHA A I, RODRIGUES D, Da COSTA R G, et al. Trihalomethanes in liver pathology: Mitochondrial dysfunction and oxidative stress in the mouse[J]. Environmental Toxicology, 2016, 31(8): 1009-1016. doi: 10.1002/tox.22110
|
[78] |
PLEWA M J, SIMMONS J E, RICHARDSON S D, et al. Mammalian cell cytotoxicity and genotoxicity of the haloacetic acids, a major class of drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2010, 51(8/9): 871-878.
|
[79] |
DAD A, JEONG C H, PALS J A, et al. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products[J]. Environmental and Molecular Mutagenesis, 2013, 54(8): 629-637. doi: 10.1002/em.21795
|
[80] |
LI F, ZHOU J, ZHU X Y, et al. Oxidative injury induced by drinking water disinfection by-products dibromoacetonitrile and dichloroacetonitrile in mouse hippocampal neuronal cells: The protective effect of N-acetyl-L[J]. Toxicology Letters, 2022, 365: 61-73. doi: 10.1016/j.toxlet.2022.06.005
|
[81] |
ZUO Y T, HU Y, LU W W, et al. Toxicity of 2, 6-dichloro-1, 4-benzoquinone and five regulated drinking water disinfection by-products for the Caenorhabditis elegans nematode[J]. Journal of Hazardous Materials, 2017, 321: 456-463. doi: 10.1016/j.jhazmat.2016.09.038
|
[82] |
SAVITZ D A. Invited commentary: Biomarkers of exposure to drinking water disinfection by-products—Are we ready yet?[J]. American Journal of Epidemiology, 2012, 175(4): 276-278. doi: 10.1093/aje/kwr420
|
[83] |
VILLANUEVA C M, FONT-RIBERA L. Health impact of disinfection by-products in swimming pools[J]. Annali Dell’Istituto Superiore Di Sanita, 2012, 48(4): 387-396. doi: 10.4415/ANN_12_04_06
|
[84] |
LUBEN T J, OLSHAN A F, HERRING A H, et al. The healthy men study: An evaluation of exposure to disinfection by-products in tap water and sperm quality[J]. Environmental Health Perspectives, 2007, 115(8): 1169-1176. doi: 10.1289/ehp.10120
|
[85] |
MACLEHOSE R F, SAVITZ D A, HERRING A H, et al. Drinking water disinfection by-products and time to pregnancy[J]. Epidemiology, 2008, 19(3): 451-458. doi: 10.1097/EDE.0b013e31816a23eb
|
[86] |
WALLER K, SWAN S H, DeLORENZE G, et al. Trihalomethanes in drinking water and spontaneous abortion[J]. Epidemiology, 1998, 9(2): 134-140. doi: 10.1097/00001648-199803000-00006
|
[87] |
ROSENMAN K D, MILLERICK-MAY M, REILLY M J, et al. Swimming facilities and work-related asthma[J]. The Journal of Asthma:Official Journal of the Association for the Care of Asthma, 2015, 52(1): 52-58. doi: 10.3109/02770903.2014.950428
|
[88] |
CARTER R A A, JOLL C A. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review[J]. Journal of Environmental Sciences, 2017, 58: 19-50. doi: 10.1016/j.jes.2017.06.013
|
[89] |
THICKETT K M, McCOACH J S, GERBER J M, et al. Occupational asthma caused by chloramines in indoor swimming-pool air[J]. The European Respiratory Journal, 2002, 19(5): 827-832. doi: 10.1183/09031936.02.00232802
|
[90] |
ALLEN J M, PLEWA M J, WAGNER E D, et al. Making swimming pools safer: Does copper-silver ionization with chlorine lower the toxicity and disinfection byproduct formation?[J]. Environmental Science & Technology, 2021, 55(5): 2908-2918.
|
[91] |
XU T, YIN J F, CHEN S K, et al. Elevated 8-oxo-7, 8-dihydro-2’-deoxyguanosine in genome of T24 bladder cancer cells induced by halobenzoquinones[J]. Journal of Environmental Sciences, 2018, 63: 133-139. doi: 10.1016/j.jes.2017.05.024
|
[92] |
ZHANG L, XU L, ZENG Q, et al. Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2012, 741(1/2): 89-94.
|
[93] |
ZHOU B, YANG P, GONG Y J, et al. Effect modification of CPY2E1 and GSTZ1 genetic polymorphisms on associations between prenatal disinfection by-products exposure and birth outcomes[J]. Environmental Pollution, 2018, 243: 1126-1133. doi: 10.1016/j.envpol.2018.09.083
|
[94] |
MASHAU F, NCUBE E J, VOYI K. Drinking water disinfection by-products exposure and health effects on pregnancy outcomes: A systematic review[J]. Journal of Water and Health, 2018, 16(2): 181-196. doi: 10.2166/wh.2018.167
|
[95] |
STALTER D, O'MALLEY E, von GUNTEN U, et al. Mixture effects of drinking water disinfection by-products: Implications for risk assessment[J]. Environmental Science:Water Research & Technology, 2020, 6(9): 2341-2351.
|
[96] |
FAN M G, SHU L F, ZHANG X R, et al. Synergistic cytotoxicity of binary combinations of inorganic and organic disinfection byproducts assessed by real-time cell analysis[J]. Journal of Environmental Sciences, 2022, 117: 222-231. doi: 10.1016/j.jes.2022.04.042
|
[97] |
CHEN Y H, QIN L T, MO L Y, et al. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp. -Q67[J]. Environmental Pollution, 2019, 250: 375-385.
|
[98] |
NAROTSKY M G, BEST D S, McDONALD A, et al. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids[J]. Reproductive Toxicology, 2011, 31(1): 59-65. doi: 10.1016/j.reprotox.2010.08.002
|
[99] |
方晶云. 蓝藻细胞及藻类有机物在氯化消毒中副产物的形成机理与控制[D]. 哈尔滨: 哈尔滨工业大学, 2010.
FANG J Y. Formation and control of disinfection by-products in chlorination of B-G algae and algal organic matter (AOM)[D]. Harbin: Harbin Institute of Technology, 2010 (in Chinese).
|
[100] |
DAIBER E J, DeMARINI D M, RAVURI S A, et al. Progressive increase in disinfection byproducts and mutagenicity from source to tap to swimming pool and spa water: Impact of human inputs[J]. Environmental Science & Technology, 2016, 50(13): 6652-6662.
|
[101] |
VLAANDEREN J, van VELDHOVEN K, FONT-RIBERA L, et al. Acute changes in serum immune markers due to swimming in a chlorinated pool[J]. Environment International, 2017, 105: 1-11. doi: 10.1016/j.envint.2017.04.009
|
[102] |
WRIGHT J M, EVANS A, KAUFMAN J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects[J]. Environmental Health Perspectives, 2017, 125(2): 269-277. doi: 10.1289/EHP103
|
[103] |
ZENG Q, ZHANG S H, LIAO J, et al. Evaluation of genotoxic effects caused by extracts of chlorinated drinking water using a combination of three different bioassays[J]. Journal of Hazardous Materials, 2015, 296: 23-29. doi: 10.1016/j.jhazmat.2015.04.047
|