[1] |
燕丽, 雷宇, 张伟. 我国区域大气污染防治协作历程与展望[J]. 中国环境管理, 2021, 13(5): 61-68.
YAN L, LEI Y, ZHANG W. Progress and prospect of regional air pollution prevention and control cooperation in China[J]. Chinese Journal of Environmental Management, 2021, 13(5): 61-68 (in Chinese).
|
[2] |
张钢锋, 卜梦雅, 李杰. 我国挥发性有机物(VOCs)研究进展与态势分析[J]. 安全与环境学报, 2023, 23(3): 951-961.
ZHANG G F, BU M Y, LI J. Research progress and trend analysis of volatile organic compounds in China[J]. Journal of Safety and Environment, 2023, 23(3): 951-961 (in Chinese).
|
[3] |
姜德超. 城市大气挥发性有机物(VOCs)污染特征及来源解析[D]. 济南: 山东建筑大学, 2015.
JIANG D C. Pollution characteristics and source apportionment of urban air of volatile organic compounds (VOCs)[D]. Jinan: Shandong Jianzhu University, 2015 (in Chinese).
|
[4] |
梁小明. 我国人为源挥发性有机物反应性排放清单与臭氧控制对策研究[D]. 广州: 华南理工大学, 2017.
LIANG X M. Reactivity-based anthropogenic volatile organic compounds emission inventory and O3 control strategies in China[D]. Guangzhou: South China University of Technology, 2017 (in Chinese).
|
[5] |
刘金凤, 赵静, 李湉湉, 等. 我国人为源挥发性有机物排放清单的建立[J]. 中国环境科学, 2008, 28(6): 496-500.
LIU J F, ZHAO J, LI T T, et al. Establishment of Chinese anthropogenic source volatile organic compounds emission inventory[J]. China Environmental Science, 2008, 28(6): 496-500 (in Chinese).
|
[6] |
闫雨龙, 彭林. 山西省人为源VOCs排放清单及其对臭氧生成贡献[J]. 环境科学, 2016, 37(11): 4086-4093.
YAN Y L, PENG L. Emission inventory of anthropogenic VOCs and its contribution to ozone formation in Shanxi Province[J]. Environmental Science, 2016, 37(11): 4086-4093 (in Chinese).
|
[7] |
黄薇薇. 我国工业源挥发性有机化合物排放特征及其控制技术评估研究[D]. 杭州: 浙江大学, 2016.
HUANG W W. Characteristics of industrial VOCs emissions and evaluation of control technology in China[D]. Hangzhou: Zhejiang University, 2016 (in Chinese).
|
[8] |
王艺璇, 刘保双, 吴建会, 等. 天津市郊夏季 VOCs化学特征及其时间精细化的来源解析[J]. 环境科学, 2021, 42(12): 5644-5655.
WANG Y X, LIU B S, WU J H, et al. Chemical characteristics and source apportionment with temporal refinement for VOCs in Tianjin suburb in summer[J]. Environmental Science, 2021, 42(12): 5644-5655 (in Chinese).
|
[9] |
SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science & Technology, 2001, 35(9): 1716-1728.
|
[10] |
GUENTHER A B, JIANG X, HEALD C L, et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions[J]. Geoscientific Model Development, 2012, 5(6): 1471-1492. doi: 10.5194/gmd-5-1471-2012
|
[11] |
龚道程. 南岭高山森林大气挥发性有机物的源汇机制研究[D]. 广州: 暨南大学, 2019.
GONG D C. Sources and sinks of atmospheric volatile organic compounds in the high-elevated forests in Nanling Mountains, China[D]. Guangzhou: Jinan University, 2019 (in Chinese).
|
[12] |
GEE I L, SOLLARS C J. Ambient air levels of volatile organic compounds in Latin American and Asian cities[J]. Chemosphere, 1998, 36(11): 2497-2506. doi: 10.1016/S0045-6535(97)10217-X
|
[13] |
KUMAR A, SINGH D, KUMAR K, et al. Distribution of VOCs in urban and rural atmospheres of subtropical India: Temporal variation, source attribution, ratios, OFP and risk assessment[J]. Science of the Total Environment, 2018, 613/614: 492-501. doi: 10.1016/j.scitotenv.2017.09.096
|
[14] |
SALTHAMMER T. Emission of volatile organic compounds from furniture coatings[J]. Indoor Air, 1997, 7(3): 189-197. doi: 10.1111/j.1600-0668.1997.t01-1-00004.x
|
[15] |
张露露. 上海市青浦区大气挥发性有机物的特征及来源分析[D]. 武汉: 武汉理工大学, 2016.
ZHANG L L. Study of characteristics and sources of ambient volatile organic compounds in Qingpu district of Shanghai[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese).
|
[16] |
王红丽. 上海市大气挥发性有机物化学消耗与臭氧生成的关系[J]. 环境科学, 2015, 36(9): 3159-3167.
WANG H L. Chemical loss of volatile organic compounds and its impact on the formation of ozone in Shanghai[J]. Environmental Science, 2015, 36(9): 3159-3167 (in Chinese).
|
[17] |
高千卓. 运城市大气挥发性有机物特征及来源研究[D]. 北京: 华北电力大学, 2020.
GAO Q Z. Characteristics and sources apportionment of ambient volatile organic compounds in Yuncheng[D]. Beijing: North China Electric Power University, 2020 (in Chinese).
|
[18] |
杨亚美. 中国西部某工业城市VOCs污染成因及减排对策和建议[D]. 兰州: 兰州大学, 2021.
YANG Y M. The source apportionment of VOCs, and countermeasures and suggestions for emission reduction in an industrial city in western China[D]. Lanzhou: Lanzhou University, 2021 (in Chinese).
|
[19] |
王男. 沈阳市某化工园区环境空气中挥发性有机物污染特征及来源分析[J]. 辽宁化工, 2022, 51(2): 239-243. doi: 10.3969/j.issn.1004-0935.2022.02.026
WANG N. Pollution characteristics and source analysis of volatile organic compounds in ambient air of a chemical industrial park in Shenyang city[J]. Liaoning Chemical Industry, 2022, 51(2): 239-243 (in Chinese). doi: 10.3969/j.issn.1004-0935.2022.02.026
|
[20] |
何丽. 成都城区大气挥发性有机物污染特征及来源研究[D]. 成都: 西南交通大学, 2018.
HE L. Pollution charaterization and source apportionment of vocs in Chengdu urban air[D]. Chengdu: Southwest Jiaotong University, 2018 (in Chinese).
|
[21] |
徐彬. 长沙市城市中心区大气挥发性有机物污染特征及来源解析[D]. 长沙: 湖南农业大学, 2020.
XU B. The study of pollution characteristics and source apportionment of volatile organic compounds in the urban center of Changsha[D]. Changsha: Hunan Agricultural University, 2020 (in Chinese).
|
[22] |
NIU Z C, ZHANG H, XU Y, et al. Pollution characteristics of volatile organic compounds in the atmosphere of Haicang District in Xiamen City, Southeast China[J]. Journal of Environmental Monitoring:JEM, 2012, 14(4): 1145-1152. doi: 10.1039/c2em10884d
|
[23] |
韩成. 广州市不同功能区VOCs污染特征及臭氧形成潜势研究[D]. 广州: 广东工业大学, 2019.
HAN C. Pollution profile and ozone formation potential investigation of volatile organic compounds in different functional areas of Guangzhou city[D]. Guangzhou: Guangdong University of Technology, 2019 (in Chinese).
|
[24] |
唐孝炎, 张远航, 邵敏. 大气环境化学[M]. 北京: 高等教育出版社, 2006.
TANG X Y, ZHANG Y H, SHAO M. Atmospheric environmental chemistry[M]. Beijing: Higher Education Press, 2006(in Chinese).
|
[25] |
方文政. 大气氧化及光氧化挥发性有机物生成二次有机气溶胶的研究[D]. 合肥: 中国科学技术大学, 2012.
FANG W Z. The studies of secondary organic aerosols formed from the atmospheric oxidation and photooxidation of volatile organic compounds[D]. Hefei: University of Science and Technology of China, 2012 (in Chinese).
|
[26] |
陈曦, 李杏茹. 大气中挥发性含氧有机物研究进展[J]. 首都师范大学学报(自然科学版), 2018, 39(3): 45-55.
CHEN X, LI X R. Study advance on oxygenated volatile organic compounds in atmosphere[J]. Journal of Capital Normal University (Natural Science Edition), 2018, 39(3): 45-55 (in Chinese).
|
[27] |
ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420
|
[28] |
CARTER W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air & Waste, 1994, 44(7): 881-899.
|
[29] |
GALVO E S, SANTOS J M, REIS JUNIOR N C, et al. Volatile organic compounds speciation and their influence on ozone formation potential in an industrialized urban area in Brazil[J]. Environmental Technology, 2016, 37(17): 2133-2148. doi: 10.1080/09593330.2016.1142001
|
[30] |
呼和浩特市统计局, 2021呼和浩特统计年鉴[R]. 中国统计出版社, 2022.
Statistics Bureau of Hohhot, 2021 Statistical Yearbook of Hohhot[R]. China Statistics Press, 2022 (in Chinese).
|
[31] |
包头市统计局, 2021包头统计年鉴[R]. 中国统计出版社, 2022.
Statistics Bureau of Baotou, 2021 Statistical Yearbook of Baotou[R]. China Statistics Press, 2022 (in Chinese).
|
[32] |
PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5
|
[33] |
PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
|
[34] |
SONG C B, LIU B S, DAI Q L, et al. Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the North China plain[J]. Atmospheric Environment, 2019, 207: 167-181. doi: 10.1016/j.atmosenv.2019.03.030
|
[35] |
LIU B S, YANG J M, YUAN J, et al. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China[J]. Atmospheric Research, 2017, 185: 22-31. doi: 10.1016/j.atmosres.2016.10.023
|
[36] |
孟祥来, 孙扬, 廖婷婷, 等. 北京市城区夏季VOCs变化特征分析与来源解析[J]. 环境科学, 2022, 43(9): 4484-4496.
MENG X L, SUN Y, LIAO T T, et al. Characteristic analysis and source apportionment of VOCs in urban areas of Beijing in summer[J]. Environmental Science, 2022, 43(9): 4484-4496 (in Chinese).
|
[37] |
李凯, 潘宁, 梅如波, 等. 泰安市大气挥发性有机物污染特征及来源解析[J]. 环境化学, 2022, 41(2): 482-490. doi: 10.7524/j.issn.0254-6108.2021061803
LI K, PAN N, MEI R B, et al. Characteristics and source apportionment of ambient volatile organic compounds in Taian[J]. Environmental Chemistry, 2022, 41(2): 482-490 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021061803
|
[38] |
牛月圆. 典型煤炭资源城市挥发性有机物排放清单的建立和验证[D]. 北京: 华北电力大学, 2021.
NIU Y Y. Establishment and verification of anthropogenic volatile organic compound emission inventory in A typical coal resource-based city[D]. Beijing: North China Electric Power University, 2021 (in Chinese).
|
[39] |
TORO M V, CREMADES L V, CALB J. Relationship between VOC and NO x emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia)[J]. Chemosphere, 2006, 65(5): 881-888. doi: 10.1016/j.chemosphere.2006.03.013
|
[40] |
郑玄. 长沙市大气中醛酮类化合物的污染研究[D]. 长沙: 长沙理工大学, 2019.
ZHENG X. Study on the pollution of carbonyls in the atmosphere of Changsha city[D]. Changsha: Changsha University of Science & Technology, 2019 (in Chinese).
|
[41] |
PANG X B, MU Y J. Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air[J]. Atmospheric Environment, 2006, 40(33): 6313-6320. doi: 10.1016/j.atmosenv.2006.05.044
|
[42] |
武彩虹. 广州城市地区大气挥发性有机物(VOCs)反应活性贡献研究[D]. 广州: 暨南大学, 2020.
WU C H. Reactivity contribution of volatile organic compounds(VOCs) in Guangzhou urban region[D]. Guangzhou: Jinan University, 2020 (in Chinese).
|
[43] |
王琛. 广州大气中挥发性卤代烃的时空分布特征与来源分析研究[D]. 广州: 暨南大学, 2010.
WANG C. Study on spatial-temporal distribution of atmospheric volatile halocarbons and their sources apportionment in Guangzhou city[D]. Guangzhou: Jinan University, 2010 (in Chinese).
|
[44] |
李兴华, 王书肖, 郝吉明. 民用生物质燃烧挥发性有机化合物排放特征[J]. 环境科学, 2011, 32(12): 3515-3521.
LI X H, WANG S X, HAO J M. Characteristics of volatile organic compounds (VOCs) emitted from biofuel combustion in China[J]. Environmental Science, 2011, 32(12): 3515-3521 (in Chinese).
|
[45] |
莫梓伟, 邵敏, 陆思华. 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报, 2014, 34(9): 2179-2189.
MO Z W, SHAO M, LU S H. Review on volatile organic compounds(VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014, 34(9): 2179-2189 (in Chinese).
|
[46] |
刘雅婷, 彭跃, 白志鹏, 等. 沈阳市大气挥发性有机物(VOCs)污染特征[J]. 环境科学, 2011, 32(9): 2777-2785.
LIU Y T, PENG Y, BAI Z P, et al. Characterization of atmospheric volatile organic compounds in Shenyang, China[J]. Environmental Science, 2011, 32(9): 2777-2785 (in Chinese).
|
[47] |
姜加龙, 曾立民, 王文杰, 等. 华北地区冬季和夏季大气甲醛污染特征分析[J]. 环境科学学报, 2019, 39(6): 1895-1901.
JIANG J L, ZENG L M, WANG W J, et al. Characteristics of atmospheric formaldehyde pollution in winter and summer in North China[J]. Acta Scientiae Circumstantiae, 2019, 39(6): 1895-1901 (in Chinese).
|
[48] |
陆思华, 白郁华, 张广山, 等. 机动车排放及汽油中VOCs成分谱特征的研究[J]. 北京大学学报(自然科学版), 2003, 39(4): 507-511.
LU S H, BAI Y H, ZHANG G S, et al. Study on the characteristics of VOCs source profiles of vehicle exhaust and gasoline emission[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2003, 39(4): 507-511 (in Chinese).
|
[49] |
QU H, WANG Y H, ZHANG R X, et al. Chemical production of oxygenated volatile organic compounds strongly enhances boundary-layer oxidation chemistry and ozone production[J]. Environmental Science & Technology, 2021, 55(20): 13718-13727.
|
[50] |
王淑妍. 大气典型含氧挥发性有机物形成二次有机气溶胶的烟雾箱模拟研究[D]. 济南: 山东大学, 2020.
WANG S Y. Chamber simulation study on secondary organic aerosols formation from typical oxygenated volatile organic compounds in the atmosphere[D]. Jinan: Shandong University, 2020 (in Chinese).
|
[51] |
VENECEK M A, CARTER W P L, KLEEMAN M J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010[J]. Journal of the Air & Waste Management Association (1995), 2018, 68(12): 1301-1316.
|
[52] |
DUAN J C, TAN J H, YANG L, et al. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing[J]. Atmospheric Research, 2008, 88(1): 25-35. doi: 10.1016/j.atmosres.2007.09.004
|
[53] |
肖凯, 张晓伟, 郝志飞, 等. 焦化厂VOCs的臭氧生成潜势及二次有机气溶胶生成潜势分析[J]. 环境工程, 2022, 40(9): 19-25, 43.
XIAO K, ZHANG X W, HAO Z F, et al. Analysis of ozone formation potential and secondary organic aerosol formation potential of vocs in a coking plant[J]. Environmental Engineering, 2022, 40(9): 19-25, 43 (in Chinese).
|
[54] |
宋琪. 基于PMF模型的太原市大气挥发性有机物污染特征及化学反应性研究[D]. 太原: 太原科技大学, 2018.
SONG Q. Study on pollution characteristics and chemical reactivity of volatile organic compounds by PMF in atmospheric environment, Taiyuan[D]. Taiyuan: Taiyuan University of Science and Technology, 2018 (in Chinese).
|
[55] |
林威. 福州市园林植物BVOCs释放及其臭氧生成潜势对温度和光照的响应[D]. 福州: 福建农林大学, 2019.
LIN W. The response of BVOC emission and its ozone formation potential to temperature and light of garden plants in Fuzhou[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019 (in Chinese).
|
[56] |
冯兆忠, 袁相洋. 臭氧浓度升高对植物源挥发性有机化合物(BVOCs)影响的研究进展[J]. 环境科学, 2018, 39(11): 5257-5265.
FENG Z Z, YUAN X Y. Effects of elevated ozone on biogenic volatile organic compounds(BVOCs)emission: A review[J]. Environmental Science, 2018, 39(11): 5257-5265 (in Chinese).
|
[57] |
BAI Y T, WANG Z C, XIE F, et al. Changes in stoichiometric characteristics of ambient air pollutants pre-to post-COVID-19 in China[J]. Environmental Research, 2022, 209: 112806. doi: 10.1016/j.envres.2022.112806
|
[58] |
付琳琳, 邵敏, 刘源, 等. 机动车VOCs排放特征和排放因子的隧道测试研究[J]. 环境科学学报, 2005, 25(7): 879-885.
FU L L, SHAO M, LIU Y, et al. Tunnel experimental study on the emission factors of volatile organic compounds (VOCs) from vehicles[J]. Acta Scientiae Circumstantiae, 2005, 25(7): 879-885 (in Chinese).
|
[59] |
JOBSON B T, BERKOWITZ C M, KUSTER W C, et al. Hydrocarbon source signatures in Houston, Texas: Influence of the petrochemical industry[J]. Journal of Geophysical Research, 2004, 109(D24): D24305.
|
[60] |
江梅, 张国宁, 邹兰, 等. 有机溶剂使用行业VOCs排放控制标准体系的构建[J]. 环境工程技术学报, 2011, 1(3): 221-225.
JIANG M, ZHANG G N, ZOU L, et al. Study on emission control standard system of VOCs from the use of organic solvents in industries[J]. Journal of Environmental Engineering Technology, 2011, 1(3): 221-225 (in Chinese).
|
[61] |
曹梦瑶. 南京工业区大气挥发性有机物污染特征、来源解析及环境效应[D]. 南京: 南京信息工程大学, 2021.
CAO M Y. Characteristics, source analysis and environmental effects of atmospheric volatile organic compounds in Nanjing industrial zone[D]. Nanjing: Nanjing University of Information Science & Technology, 2021 (in Chinese).
|
[62] |
陆思华, 白郁华, 陈运宽, 等. 北京市机动车排放挥发性有机化合物的特征[J]. 中国环境科学, 2003, 23(2): 127-130.
LU S H, BAI Y H, CHEN Y K, et al. The characteristics of volatile organic compounds(VOCs) emitted from motor vehicle in Beijing[J]. China Environmental Science, 2003, 23(2): 127-130 (in Chinese)
|
[63] |
LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I[J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070
|
[64] |
DERWENT R G, DAVIES T J, DELANEY M, et al. Analysis and interpretation of the continuous hourly monitoring data for 26 C2–C8 hydrocarbons at 12 United Kingdom sites during 1996[J]. Atmospheric Environment, 2000, 34(2): 297-312. doi: 10.1016/S1352-2310(99)00203-4
|
[65] |
门正宇, 刘笃优, 郭全有, 等. 机动车制动磨损颗粒物及挥发性有机物的组分特征[J]. 环境科学, 2022, 43(10): 4348-4356.
MEN Z Y, LIU D Y, GUO Q Y, et al. Chemical component of particulate matters and VOCs characteristics during vehicle brake processes[J]. Environmental Science, 2022, 43(10): 4348-4356 (in Chinese).
|
[66] |
邹宇, 邓雪娇, 李菲, 等. 广州大气中异戊二烯浓度变化特征、化学活性和来源分析[J]. 环境科学学报, 2015, 35(3): 647-655.
ZOU Y, DENG X J, LI F, et al. Variation characteristics, chemical reactivity and sources of isoprene in the atmosphere of Guangzhou[J]. Acta Scientiae Circumstantiae, 2015, 35(3): 647-655 (in Chinese).
|
[67] |
李亮, 吴方堃, 孟晓艳. 北京大气中异戊二烯的季变化、日变化形式及影响因素研究[J]. 中国环境监测, 2013, 29(2): 120-124.
LI L, WU F K, MENG X Y. Seasonal and diurnal variation of isoprene in the atmosphere of Beijing[J]. Environmental Monitoring in China, 2013, 29(2): 120-124 (in Chinese).
|
[68] |
ANDREAE M O, MERLET P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966. doi: 10.1029/2000GB001382
|
[69] |
吴应. 上海市重点工业涂装行业VOCs排放特征与控制标准体系研究[D]. 上海: 华东理工大学, 2020.
WU Y. Emission characteristics and control standard system of volatile organic compounds(VOCs)from main industrial coating industries in Shanghai[D]. Shanghai: East China University of Science and Technology, 2020 (in Chinese).
|
[70] |
王瑞文. 工业源排放VOCs成分谱及其在PMF解析中的应用[D]. 广州: 暨南大学, 2019.
WANG R W. Volatile organic compounds(VOCs)source profiles for industrial sources and it’s application in PMF source apportionment[D]. Guangzhou: Jinan University, 2019 (in Chinese).
|
[71] |
杨利娴. 我国工业源VOCs排放时空分布特征与控制策略研究[D]. 广州: 华南理工大学, 2012.
YANG L X. Study on temporal-spatial characteristic and control strategy of industrial emissions of volatile organic compounds in China[D]. Guangzhou: South China University of Technology, 2012 (in Chinese).
|
[72] |
张诗炀, 龚道程, 王好, 等. 南岭国家大气背景站异戊二烯的在线观测研究[J]. 中国环境科学, 2017, 37(7): 2504-2512.
ZHANG S Y, GONG D C, WANG H, et al. Online measurement of isoprene at a national air background monitoring station in the Nanling Mountains, South China[J]. China Environmental Science, 2017, 37(7): 2504-2512 (in Chinese).
|
[73] |
王琴, 刘保献, 张大伟, 等. 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37(10): 3636-3646.
WANG Q, LIU B X, ZHANG D W, et al. Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37(10): 3636-3646 (in Chinese).
|
[74] |
叶露. 上海北郊大气挥发性有机物(VOCs)变化特征及来源解析[J]. 装备环境工程, 2020, 17(6): 107-116.
YE L. Change characteristics and source apportionment of volatile organic compounds(VOCs) in the northern suburb of Shanghai[J]. Equipment Environmental Engineering, 2020, 17(6): 107-116 (in Chinese).
|
[75] |
苏雷燕. 上海市城区大气VOCs的变化特征及反应活性的初步研究[D]. 上海: 华东理工大学, 2012.
SU L Y. A preliminary study of ambient VOCs variation and chemical reactivity in the urban area of Shanghai, China[D]. Shanghai: East China University of Science and Technology, 2012 (in Chinese).
|
[76] |
李明谦. 西安城区空气中挥发性有机物的污染特征和化学反应活性研究[D]. 西安: 西安建筑科技大学, 2015.
LI M Q. Pollution characterization and chemical reactivity of VOCs in Xi’an urban air[D]. Xi'an: Xi'an University of Architecture and Technology, 2015 (in Chinese).
|
[77] |
刘金荣. 长三角城市群大气VOCs污染特征及来源解析[D]. 南京: 南京信息工程大学, 2018.
LIU J R. Characteristics and source apportionment of VOCs pollution in the urban agglomeration of the Yangtze River delta[D]. Nanjing: Nanjing University of Information Science & Technology, 2018 (in Chinese).
|
[78] |
张宝军. 唐山市VOCs排放特征及来源解析: 以2020年1~7月为例[J]. 环境经济, 2021(12): 57-59.
ZHANG B J. Emission characteristics and source analysis of VOCs in Tangshan city: a case study from January to July 2020[J]. Environmental Economy, 2021(12): 57-59 (in Chinese).
|
[79] |
王男, 刘闽, 林宏, 等. 沈阳市环境空气中挥发性有机物污染特征及来源解析[J]. 中国环境监测, 2021, 37(5): 41-52.
WANG N, LIU M, LIN H, et al. Pollution characteristic and source apportionment of VOCs in Shenyang[J]. Environmental Monitoring in China, 2021, 37(5): 41-52 (in Chinese).
|
[80] |
张栋. 省会郑州和重工业城市济源VOCs污染特征及对比分析[D]. 郑州: 郑州大学, 2021.
ZHANG D. Study on the pollution characteristics of VOCs and comparative analysis for the provincial capital of Zhengzhou and heavy industry city of Jiyuan[D]. Zhengzhou: Zhengzhou University, 2021 (in Chinese).
|
[81] |
姜雪松, 张向炎, 宋艳艳, 等. 淄博市夏季大气VOCs 污染特征及来源解析.[J]. 新型工业化, 2022, 12(2): 180-185.
JIANG X S, ZHANG X Y, SONG Y Y, et al. Characteristics and source apportionment of VOCs in Zibo summer periods[J]. New Industrialization, 2022, 12(2): 180-185 (in Chinese).
|
[82] |
李瑞瑜, 郑雅清, 陈耿. 佛山市大气VOCs 污染特征及来源解析.[J]. 广东化工, 2021, 48(454): 158-192.
LI R Y, ZHENG Y Q, CHEN G. Pollution characteristics and source apportionment of VOCs in Foshan City[J]. Guangdong Chemical Industry, 2021, 48(454): 158-192 (in Chinese).
|