[1] |
HOU Y P, ZHANG R D, YU Z B, et al. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell[J]. Bioresource Technology, 2017, 224: 63-68. doi: 10.1016/j.biortech.2016.10.069
|
[2] |
袁思杰, 张芮铭. 染料废水处理技术研究进展[J]. 染料与染色, 2022, 59(4): 55-62.
YUAN S J, ZHANG R M. Research progress of dye wastewater treatment technology[J]. Dyestuffs and Coloration, 2022, 59(4): 55-62 (in Chinese).
|
[3] |
MEILI L, LINS P V S, COSTA M T, et al. Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling[J]. Progress in Biophysics and Molecular Biology, 2019, 141: 60-71. doi: 10.1016/j.pbiomolbio.2018.07.011
|
[4] |
KULKARNI P, WATWE V, DOLTADE T, et al. Fractal kinetics for sorption of Methylene blue dye at the interface of Alginate Fullers earth composite beads[J]. Journal of Molecular Liquids, 2021, 336: 116225. doi: 10.1016/j.molliq.2021.116225
|
[5] |
KHAN I, SAEED K, ZEKKER I, et al. Review on methylene blue: Its properties, uses, toxicity and photodegradation[J]. Water, 2022, 14(2): 242. doi: 10.3390/w14020242
|
[6] |
WEI J C, SHI L, WU X. Electrochemical advanced oxidation process with simultaneous persulfate and hydrogen peroxide on-site generations for high salinity wastewater[J]. Separation and Purification Technology, 2023, 310: 123147. doi: 10.1016/j.seppur.2023.123147
|
[7] |
OTURAN M A. Outstanding performances of the BDD film anode in electro-Fenton process: Applications and comparative performance[J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100925. doi: 10.1016/j.cossms.2021.100925
|
[8] |
TITCHOU F E, ZAZOU H, AFANGA H, et al. Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media[J]. Journal of Electroanalytical Chemistry, 2021, 897: 115560. doi: 10.1016/j.jelechem.2021.115560
|
[9] |
ZHU Y S, QIU S, DENG F X, et al. Degradation of sulfathiazole by electro-Fenton using a nitrogen-doped cathode and a BDD anode: Insight into the H2O2 generation and radical oxidation[J]. Science of the Total Environment, 2020, 722: 137853. doi: 10.1016/j.scitotenv.2020.137853
|
[10] |
KUANG C Z, ZENG G S, ZHOU Y J, et al. Integrating anodic sulfate activation with cathodic H2O2 production/activation to generate the sulfate and hydroxyl radicals for the degradation of emerging organic contaminants[J]. Water Research, 2023, 229: 119464. doi: 10.1016/j.watres.2022.119464
|
[11] |
ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion[J]. Nature Communications, 2020, 11: 1731. doi: 10.1038/s41467-020-15597-y
|
[12] |
MIAO D T, LI Z S, CHEN Y H, et al. Preparation of macro-porous 3D boron-doped diamond electrode with surface micro structure regulation to enhance electrochemical degradation performance[J]. Chemical Engineering Journal, 2022, 429: 132366. doi: 10.1016/j.cej.2021.132366
|
[13] |
徐进, 李方舟, 陈梓慧, 等. 铁碳复合材料催化电Fenton处理抗生素废水的效果和机理研究[J]. 功能材料, 2022, 53(7): 7175-7181.
XU J, LI F Z, CHEN Z H, et al. Antibiotic wastewater treatment in electro-Fenton system catalyzed by iron-carbon composite[J]. Journal of Functional Materials, 2022, 53(7): 7175-7181 (in Chinese).
|
[14] |
LUO H P, ZHOU X, GUO X J, et al. WS2 as highly active co-catalyst for the regeneration of Fe(II) in the advanced oxidation processes[J]. Chemosphere, 2021, 262: 128067. doi: 10.1016/j.chemosphere.2020.128067
|
[15] |
刘怀浩. 二硫化钨/二氧化钛复合材料光催化降解水中硝酸盐氮的研究[D]. 泰安: 山东农业大学, 2022.
LIU H H. Photocatalytic degradation of nitrate nitrogen in water by WS2/TiO2 composites[D]. Taian: Shandong Agricultural University, 2022 (in Chinese).
|
[16] |
XU H D, SHENG Y Q. New insights into the degradation of chloramphenicol and fluoroquinolone antibiotics by peroxymonosulfate activated with FeS: Performance and mechanism[J]. Chemical Engineering Journal, 2021, 414: 128823. doi: 10.1016/j.cej.2021.128823
|
[17] |
徐祥福, 陈佳, 赖国霞, 等. 单层MoS2在合金化及应力调控下光催化裂解水产氢的理论研究[J]. 燃料化学学报, 2020, 48(3): 321-327. doi: 10.1016/S1872-5813(20)30015-3
XU X F, CHEN J, LAI G X, et al. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. Journal of Fuel Chemistry and Technology, 2020, 48(3): 321-327 (in Chinese). doi: 10.1016/S1872-5813(20)30015-3
|
[18] |
WANG Z Y, MI B X. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244.
|
[19] |
XING M Y, XU W J, DONG C C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6): 1359-1372. doi: 10.1016/j.chempr.2018.03.002
|
[20] |
DU M M, KUANG H N, ZHANG Y Q, et al. Enhancement of ball-milling on pyrite/zero-valent iron for persulfate activation on imidacloprid removal in aqueous solution: A mechanistic study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105647. doi: 10.1016/j.jece.2021.105647
|
[21] |
DIRANY A, SIRÉS I, OTURAN N, et al. Electrochemical abatement of the antibiotic sulfamethoxazole from water[J]. Chemosphere, 2010, 81(5): 594-602. doi: 10.1016/j.chemosphere.2010.08.032
|
[22] |
SIRÉS I, GARRIDO J A, RODRÍGUEZ R M, et al. Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene[J]. Applied Catalysis B:Environmental, 2007, 72(3/4): 382-394.
|
[23] |
QU S Y, WANG W H, PAN X Y, et al. Improving the Fenton catalytic performance of FeOCl using an electron mediator[J]. Journal of Hazardous Materials, 2020, 384: 121494. doi: 10.1016/j.jhazmat.2019.121494
|
[24] |
FENG J Y, HU X J, YUE P L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst[J]. Water Research, 2006, 40(4): 641-646. doi: 10.1016/j.watres.2005.12.021
|
[25] |
QU J H, XU Y, ZHANG X B, et al. Ball milling-assisted preparation of N-doped biochar loaded with ferrous sulfide as persulfate activator for phenol degradation: Multiple active sites-triggered radical/non-radical mechanism[J]. Applied Catalysis B:Environmental, 2022, 316: 121639. doi: 10.1016/j.apcatb.2022.121639
|
[26] |
WANG Z X, HAN Y F, FAN W L, et al. Shell-core MnO2/Carbon@Carbon nanotubes synthesized by a facile one-pot method for peroxymonosulfate oxidation of tetracycline[J]. Separation and Purification Technology, 2021, 278: 119558. doi: 10.1016/j.seppur.2021.119558
|
[27] |
LIU Y D, ZHOU A G, GAN Y Q, et al. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene[J]. Journal of Hazardous Materials, 2016, 308: 187-191. doi: 10.1016/j.jhazmat.2016.01.044
|