[1] 杨本晓, 梁思哲, 张建华. 制革企业节能诊断实例研究[J]. 皮革科学与工程, 2023, 33(3): 94-98. YANG B X, LIANG S Z, ZHANG J H. Case study of energy-saving diagnosis in leather enterprise[J]. Leather Science and Engineering, 2023, 33(3): 94-98 (in Chinese).
[2] 杨朝, 崔俊云. 制革污水智能处理方法及清洁化生产技术研究[J]. 中国皮革, 2023, 52(4): 124-128,132. YANG Z, CUI J Y. Treatment method and clean production of tannery wastewater[J]. China Leather, 2023, 52(4): 124-128,132 (in Chinese).
[3] 黑静. 制革工业重金属污染治理技术概述[J]. 西部皮革, 2022, 44(21): 18-20. HEI J. Overview of heavy metal pollution control technology in leather industry[J]. West Leather, 2022, 44(21): 18-20 (in Chinese).
[4] 姚庆达, 黄鑫婷, 周华龙, 等. 制革含铬污泥处置及资源化技术进展[J]. 中国皮革, 2023, 52(5): 7-14. YAO Q D, HUANG X T, ZHOU H L, et al. Disposal and recycling technology of chromium-containing sludge from tannery: A review[J]. China Leather, 2023, 52(5): 7-14 (in Chinese).
[5] ZHANG F Z, PENG Y Z, WANG Z, et al. An innovative process for mature landfill leachate and waste activated sludge simultaneous treatment based on partial nitrification, in situ fermentation, and anammox (PNFA)[J]. Environmental Science & Technology, 2022, 56(2): 1310-1320.
[6] GUO S S, TIAN Y Q, WU H, et al. Spatial distribution and morphological transformation of chromium with coexisting substances in tannery landfill[J]. Chemosphere, 2021, 285: 131503. doi: 10.1016/j.chemosphere.2021.131503
[7] 王兴润, 李磊, 颜湘华, 等. 铬污染场地修复技术进展[J]. 环境工程, 2020, 38(6): 1-8,23. WANG X R, LI L, YAN X H, et al. Progress in remediation of chromium-contaminated sites[J]. Environmental Engineering, 2020, 38(6): 1-8,23 (in Chinese).
[8] GUO S S, XU Y H, YANG J Y. Simulating the migration and species distribution of Cr and inorganic ions from tanneries in the vadose zone[J]. Journal of Environmental Management, 2021, 288: 112441. doi: 10.1016/j.jenvman.2021.112441
[9] YE T T, LI H B, WANG Z X, et al. Transport and fate of hexavalent chromium in slag-soil system[J]. Environmental Earth Sciences, 2019, 78(7): 239. doi: 10.1007/s12665-019-8245-9
[10] 潘俊, 张玉祥, 王昭怡. 滞洪型平原水库底泥中铬的迁移转化[J]. 环境科学与技术, 2019, 42(增刊2): 93-97. PAN J, ZHANG Y X, WANG Z Y. Migration and transformation of chromium in sediments of flood detention plain reservoirs[J]. Environmental Science & Technology, 2019, 42(Sup 2): 93-97 (in Chinese).
[11] 徐铁兵, 师碧玲, 吕媛, 等. 制革污泥堆场中含Cr污泥胶体在不同pH和离子强度条件下稳定性及迁移行为研究[J]. 环境科学学报, 2023, 43(3): 244-254. XU T B, SHI B L, LÜ Y, et al. Stability and migration behavior of Cr-containing sludge colloids in tannery sludge landfill under different pH and ionic strength conditions[J]. Acta Scientiae Circumstantiae, 2023, 43(3): 244-254 (in Chinese).
[12] 夏平平. δ-MnO2对Cr(Ⅲ)氧化动力学的研究[D]. 武汉: 华中农业大学, 2012. XIA P P. Kinetics study of Cr(Ⅲ) oxidation by δ-MnO2[D]. Wuhan: Huazhong Agricultural University, 2012 (in Chinese).
[13] YANG F, GUO J, DAI R N, et al. Oxidation of Cr(III)-citrate/tartrate complexes by δ-MnO2: Production of Cr(Ⅵ) and its impact factors[J]. Geoderma, 2014, 213: 10-14. doi: 10.1016/j.geoderma.2013.07.022
[14] SHI M Q, MIN X B, KE Y, et al. Recent progress in understanding the mechanism of heavy metals retention by iron (oxyhydr)oxides[J]. Science of the Total Environment, 2021, 752: 141930. doi: 10.1016/j.scitotenv.2020.141930
[15] 孔祥科. 制革污泥中Cr(Ⅲ)和氨氮在包气带的迁移转化及微生物响应机制[D]. 北京: 中国地质科学院, 2019. KONG X K. Migration and transformation of Cr(Ⅲ) and ammonia-nitrogen from tannery sludge and the corresponding microbial response mechanisms in the vadose zone[D]. Beijing: Chinese Academy of Geological Sciences, 2019 (in Chinese).
[16] ZHOU Y C, CHEN Z Z, GONG H J, et al. Chromium speciation in tannery sludge residues after different thermal decomposition processes[J]. Journal of Cleaner Production, 2021, 314: 128071. doi: 10.1016/j.jclepro.2021.128071
[17] 朱龙辉, 李航, 田锐, 等. 正电荷胶体(赤铁矿)凝聚动力学机制的激光散射研究[J]. 西南大学学报(自然科学版), 2016, 38(7): 70-75. ZHU L H, LI H, TIAN R, et al. Kinetics mechanism of aggregation of the positively charged colloid(hematite)by laser scattering technology[J]. Journal of Southwest University (Natural Science Edition), 2016, 38(7): 70-75 (in Chinese).
[18] AGUELMOUS A, LAHSAINI S, FELS L, et al. Biodegradation assessment of biological oil sludge from a petroleum refinery[J]. Journal of Materials and Environmental Science, 2016, 7(9): 3421-3430.
[19] ZOU D A, CHI Y, DONG J, et al. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics[J]. Chemosphere, 2013, 93(7): 1413-1418. doi: 10.1016/j.chemosphere.2013.07.009
[20] YANG Y, SAIERS J E, BARNETT M O. Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions[J]. Environmental Science & Technology, 2013, 47(6): 2661-2669.
[21] LIAO P, PAN C, DING W Y, et al. Formation and transport of Cr(Ⅲ)-NOM-Fe colloids upon reaction of Cr(Ⅵ) with NOM-Fe(II) colloids at anoxic-oxic interfaces[J]. Environmental Science & Technology, 2020, 54(7): 4256-4266.
[22] GUO S S, YU C Y, ZHAO X Y, et al. The chromium migration risk from tannery sludge into shallow soil and groundwater: Influence factors, modeling, and microbial response[J]. Journal of Cleaner Production, 2022, 374: 133776. doi: 10.1016/j.jclepro.2022.133776
[23] CORNELL R M, SCHWERTMANN U. The iron oxides: structure, properties, reactions, occurrences, and uses[M]. 2nd, completely rev. and extended ed. Weinheim: Wiley-VCH, 2003.
[24] ADAMCZYK Z, WEROŃSKI P. Application of the DLVO theory for particle deposition problems[J]. Advances in Colloid and Interface Science, 1999, 83(1/2/3): 137-226.
[25] FRITZ G, SCHÄDLER V, WILLENBACHER N, et al. Electrosteric stabilization of colloidal dispersions[J]. Langmuir, 2002, 18(16): 6381-6390. doi: 10.1021/la015734j
[26] FRENCH R A, JACOBSON A R, KIM B, et al. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles[J]. Environmental Science & Technology, 2009, 43(5): 1354-1359.
[27] SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review[J]. Chemosphere, 2017, 178: 513-533. doi: 10.1016/j.chemosphere.2017.03.074
[28] AQUINO C L E, BONGAR M J C, SILVESTRE A B, et al. Synthesis of hematite (α-Fe2O3) nanostructures by thermal oxidation of iron sheet for Cr (VI) adsorption[J]. Key Engineering Materials, 2018, 775: 395-401. doi: 10.4028/www.scientific.net/KEM.775.395
[29] 谢青青, 马晓燕, 艾迪娅·阿不来提, 等. 腐殖酸对二甲基胂酸在磁铁矿上吸附过程的影响[J]. 环境化学, 2023, 42(2): 658-670. doi: 10.7524/j.issn.0254-6108.2022072201 XIE Q Q, MA X Y, HADIYA A, et al. Effect of humic acid on the adsorption of dimethylarsinic acid by magnetite[J]. Environmental Chemistry, 2023, 42(2): 658-670 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022072201
[30] LI Y, YUE Q Y, GAO B Y, et al. Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids[J]. Colloids and Surfaces B:Biointerfaces, 2008, 65(1): 25-29. doi: 10.1016/j.colsurfb.2008.02.014
[31] SALMAN M, EL-ESWED B, KHALILI F. Adsorption of humic acid on bentonite[J]. Applied Clay Science, 2007, 38(1/2): 51-56.
[32] KANTAR C, BULBUL M S, KESKIN S. Role of humic substances on Cr(Ⅵ) removal from groundwater with pyrite[J]. Water, Air, & Soil Pollution, 2017, 228(1): 48.
[33] WANG X R, LI L, YAN X H, et al. Processes of chromium (Ⅵ) migration and transformation in chromate production site: A case study from the middle of China[J]. Chemosphere, 2020, 257: 127282. doi: 10.1016/j.chemosphere.2020.127282
[34] LI X Y, ZHOU T, LI Z, et al. Legacy of contamination with metal(loid)s and their potential mobilization in soils at a carbonate-hosted lead-zinc mine area[J]. Chemosphere, 2022, 308(Pt 3): 136589.
[35] 崔申申, 杜晓丽, 刘殿威, 等. 降雨入渗对下渗设施土壤胶体-重金属共释放迁移的影响[J]. 环境化学, 2022, 41(9): 2842-2849. doi: 10.7524/j.issn.0254-6108.2021100806 CUI S S, DU X L, LIU D W, et al. Influence of rainfall infiltration on soil colloids-heavy metals co-release and co-migration in infiltration column[J]. Environmental Chemistry, 2022, 41(9): 2842-2849 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021100806
[36] YANG J W, ZHANG Z, CHEN Z Y, et al. Co-transport of U(Ⅵ) and gibbsite colloid in saturated granite particle column: Role of pH, U(Ⅵ) concentration and humic acid[J]. Science of the Total Environment, 2019, 688: 450-461. doi: 10.1016/j.scitotenv.2019.05.395
[37] CHEN C, ZHAO K, SHANG J Y, et al. Uranium (Ⅵ) transport in saturated heterogeneous media: Influence of kaolinite and humic acid[J]. Environmental Pollution, 2018, 240: 219-226. doi: 10.1016/j.envpol.2018.04.095