[1] |
QIN R J, SONG Q Y, HAO Y H, et al. Groundwater level declines in Tianjin, North China: Climaticvariations and human activities[J]. Environment, Development and Sustainability, 2023, 25(2): 1899-1913. doi: 10.1007/s10668-022-02116-w
|
[2] |
SACCÒM, BLYTHA J, DOUGLASG, et al. Stygofaunal diversity and ecological sustainability of coastal groundwater ecosystems in a changing climate: The Australian paradigm[J]. Freshwater Biology, 2022, 67(12): 2007-2023. doi: 10.1111/fwb.13987
|
[3] |
PASHAEIFAR M, DEHGHANZADEH R, RAMAZANI M E, et al. Spatial and temporal assessment of groundwater quality and hydrogeochemical processes in Urmia Lake Basin, Iran[J]. Water Supply, 2021, 21(8): 4328-4342. doi: 10.2166/ws.2021.180
|
[4] |
张人权, 梁杏, 靳孟贵. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011.
ZHANG R Q, LIANG X, JIN M G. Foundation of hydrogeology[M]. 6th ed. Beijing: Geological Publishing House, 2011(in Chinese).
|
[5] |
ISRAR M, NAZNEEN S, RAZA A, et al. Assessment of municipal solid waste landfilling practices on the groundwater quality and associated health risks: A case study of Mardan-Pakistan[J]. Arabian Journal of Geosciences, 2022, 15(17): 1-11.
|
[6] |
STANLEY E H, DOYLE M W. A Geomorphic Perspective on Nutrient Retention Following Dam Removal: Geomorphic models provide a means of predicting ecosystem responses to dam removal[J]. BioScience, 2002, 52(8): 693-701. doi: 10.1641/0006-3568(2002)052[0693:AGPONR]2.0.CO;2
|
[7] |
沈照理, 朱宛华, 钟佐燊. 水文地球化学基础[M]. 北京: 地质出版社, 1993.
SHEN Z L, ZHUW H, ZHONGZS. Hydrogeochemicalbasis[M]. Beijing: Geological Publishing House, 1993(in Chinese).
|
[8] |
RAI S C, SAHA A K. Impact of urban sprawl on groundwater quality: A case study of Faridabad city, National Capital Region of Delhi[J]. Arabian Journal of Geosciences, 2015, 8(10): 8039-8045. doi: 10.1007/s12517-015-1811-x
|
[9] |
GOELP, SAXENAA, SINGHD S, et al. Impact of rapid urbanization on water quality index in groundwater fed Gomati River, Lucknow, India[J]. Current Science, 2018, 114(3): 650. doi: 10.18520/cs/v114/i03/650-654
|
[10] |
吕晓立, 刘景涛, 韩占涛, 等. 城镇化进程中新疆塔城盆地浅层地下水化学演变特征及成因[J]. 环境科学, 2020, 41(3): 1197-1206.
LÜ X L, LIU J T, HAN Z T, et al. Chemical evolution of groundwater in the Tacheng Basin of Xinjiang in the process of urbanization[J]. Environmental Science, 2020, 41(3): 1197-1206 (in Chinese).
|
[11] |
张彦鹏. 多元同位素对石家庄地区地下水地球化学环境演化的指示意义[D]. 武汉: 中国地质大学, 2015.
ZHANG Y P. Implications of multi-isotopefor geochemical environment evolution of groundwater in Shijiazhuang area[D]. Wuhan: China University of Geosciences, 2015 (in Chinese).
|
[12] |
HUANG G X, SUN J C, ZHANG Y, et al. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of the Total Environment, 2013, 463/464: 209-221. doi: 10.1016/j.scitotenv.2013.05.078
|
[13] |
BARRON O V, BARR A D, DONN M J. Evolution of nutrient export under urban development in areas affected by shallow watertable[J]. Science of the Total Environment, 2013, 443: 491-504. doi: 10.1016/j.scitotenv.2012.10.085
|
[14] |
ZHANG Q Q, WANG H W. Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of North China using a multi-isotope approach[J]. Journal of Environmental Sciences (China), 2020, 89: 9-22. doi: 10.1016/j.jes.2019.09.021
|
[15] |
ZHENG C M, LIU J, CAO G L, et al. Can China cope with its water crisis? Perspectives from the North China Plain[J]. Ground Water, 2010, 48(3): 350-354. doi: 10.1111/j.1745-6584.2010.00695_3.x
|
[16] |
REN C B, ZHANG Q Q, WANG H W, et al. Characteristics and source apportionment of polycyclic aromatic hydrocarbons of groundwater in Hutuo River alluvial-pluvial fan, China, based on PMF model[J]. Environmental Science and Pollution Research International, 2021, 28(8): 9647-9656. doi: 10.1007/s11356-020-11485-6
|
[17] |
王慧玮, 郭小娇, 张千千, 等. 滹沱河流域地下水水化学特征演化及成因分析[J]. 环境化学, 2021, 40(12): 3838-3845. doi: 10.7524/j.issn.0254-6108.2020080301
WANG H W, GUO X J, ZHANG Q Q, et al. Evolution of groundwater hydrochemical characteristics and origin analysis in Hutuo River Basin[J]. Environmental Chemistry, 2021, 40(12): 3838-3845 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020080301
|
[18] |
石家庄市统计局, 国家统计局石家庄调查队编. 石家庄统计年鉴[M]. 北京:中国统计出版社,1985-2016.
Shijiazhuang City Bureau of Statistics, Shijiazhuang Investigation team of National Bureau of Statistics. Shijiazhuang Statistical Yearbook[M]. Beijing: China Statistics Press, 1985-2016
|
[19] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准: GB/T 14848—2017[S]. 北京: 中国标准出版社, 2017.
GeneralAdministration of Quality Supervision, Inspectionand Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Standard for groundwater quality: GB/T14848—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
|
[20] |
LIU F, ZOU J W, LIU J R, et al. Factors controlling groundwater chemical evolution with the impact of reduced exploitation[J]. CATENA, 2022, 214: 106261. doi: 10.1016/j.catena.2022.106261
|
[21] |
张千千, 王慧玮, 王龙, 等. 滹沱河冲洪积扇地区地下水硬度升高的机理研究[J]. 环境科学与技术, 2018, 41(增刊2): 62-68.
ZHANG Q Q, WANG H W, WANG L, et al. Increasing mechanism of groundwater total hardness(TH)in the hutuo river alluvial-pluvial fan[J]. Environmental Science & Technology, 2018, 41(Sup 2): 62-68 (in Chinese).
|
[22] |
孟瑞芳, 孟舒然. 基于正定矩阵因子分析模型的滹沱河冲洪积扇地下水污染源解析[J]. 环境污染与防治, 2021, 43(5): 586-591.
MENG R F, MENG S R. Source analysisof groundwater pollution in Hutuo River alluvial-pluvial fan based on positive matrix factorizationmodel[J]. Environmental Pollution & Control, 2021, 43(5): 586-591 (in Chinese).
|
[23] |
MUKATE S, BHOOMINATHAN S, SOLANKY V. Assessment of human health risk arising due to fluoride and nitrate in groundwater: A case study of Bhokardan tehsil of Maharashtra[J]. Human and Ecological Risk Assessment, 2022, 28(5/6): 594-620.
|
[24] |
陈飞, 羊艳, 史文龙, 等. 河北省地下水超采综合治理农业措施压采效果与技术经济性分析[J]. 南水北调与水利科技, 2022, 20(5): 1019-1026.
CHEN F, YANG Y, SHI W L, et al. Performance analyses and technical economy of groundwater overdraft control measures in Hebei Province[J]. South-to-North Water Transfers and Water Science & Technology, 2022, 20(5): 1019-1026 (in Chinese).
|
[25] |
吕晓立, 刘景涛, 韩占涛, 等. 快速城镇化进程中珠江三角洲硝酸型地下水赋存特征及驱动因素[J]. 环境科学, 2021, 42(10): 4761-4771.
LÜ X L, LIU J T, HAN Z T, et al. Geochemical characteristics and driving factors of NO3-type groundwater in therapidly urbanizing Pearl River Delta[J]. Environmental Science, 2021, 42(10): 4761-4771 (in Chinese).
|
[26] |
WANG Q M, DONG S N, WANG H, et al. Hydrogeochemical processes and groundwater quality assessment for different aquifers in the Caojiatan coal mine of Ordos Basin, northwestern China[J]. Environmental Earth Sciences, 2020, 79(9): 1-15.
|
[27] |
RENXH, ZHANGZH, YU RH, et al. Hydrochemical variations and driving mechanisms in a large linked river-irrigation-lake system[J]. Environmental Research, 2023, 225: 115596. doi: 10.1016/j.envres.2023.115596
|
[28] |
苏贺. 地下水化学演化及驱动机制研究[D]. 西安: 西北大学, 2018.
SUH. Research on Hydrogeochemistry evolution anddriving mechanism of groundwater: a casestudy from Shenmu County, Northwest China [D]. Xi’an: Northwest University, 2018 (in Chinese).
|
[29] |
吕晓立, 刘景涛, 韩占涛, 等. “引大入秦”灌溉工程对甘肃秦王川盆地地下水化学组分的影响[J]. 农业工程学报, 2020, 36(2): 166-174. doi: 10.11975/j.issn.1002-6819.2020.02.020
LÜ X L, LIU J T, HAN Z T, et al. Effects of Yindaruqin irrigation project on groundwater chemical compositions in Qinwangchuan Basin in Gansu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 166-174 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.02.020
|
[30] |
ZHANG Q Q, SUN J C, LIU J T, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of South China[J]. Journal of Contaminant Hydrology, 2015, 182: 221-230. doi: 10.1016/j.jconhyd.2015.09.009
|
[31] |
缪丽萍, 孟瑞芳, 王慧玮, 等. 滹沱河流域地下水硫酸盐污染特征及源解析[J]. 环境科学与技术, 2020, 43(增刊1): 91-97.
MIAO L P, MENG R F, WANG H W, et al. Characteristics and source apportionment of groundwater sulfate pollution in hutuo river basin[J]. Environmental Science & Technology, 2020, 43(Sup 1): 91-97 (in Chinese).
|
[32] |
何泽, 宁卓, 黄冠星, 等. 太行山前平原浅层地下水污染的分子生物学响应特征: 以滹沱河流域为例[J]. 中国地质, 2019, 46(2): 290-301. doi: 10.12029/gc20190206
HE Z, NING Z, HUANG G X, et al. The response characteristics of microbial diversity to shallow groundwater contamination in the piedmont of the Taihang Mountains using molecular biotechnologies: A case study of groundwater of Hutuo River Basin[J]. Geology in China, 2019, 46(2): 290-301 (in Chinese). doi: 10.12029/gc20190206
|