[1] SMITH B R, EASTMAN C M, NJARDARSON J T. Beyond C, H, O, and N!Analysis of the elemental composition of U. S. FDA approved drug architectures[J]. Journal of Medicinal Chemistry, 2014, 57(23): 9764-9773. doi: 10.1021/jm501105n
[2] TOMLIN C D S, TOMLIN C D S. The pesticide manual[M]. British Crop Protection Council, 2000: 1-1250.
[3] SHIMIZU A, TAKADA H, KOIKE T, et al. Ubiquitous occurrence of sulfonamides in tropical Asian waters[J]. Science of the Total Environment, 2013, 452/453: 108-115. doi: 10.1016/j.scitotenv.2013.02.027
[4] 代倩子, 徐枫, 虞霖, 等. 太湖区域13种磺酰脲类除草剂污染特征[J]. 环境科学与技术, 2021, 44(9): 1-6. DAI Q Z, XU F, YU L, et al. Pollution characteristics of 13 sulfonylurea herbicides in Taihu Lake area[J]. Environmental Science & Technology, 2021, 44(9): 1-6 (in Chinese).
[5] LIU Q Q, FU Z Q, WANG Z Y, et al. Rapid and selective oxidation of refractory sulfur-containing micropollutants in water using Fe-TAML/H2O2[J]. Applied Catalysis B:Environmental, 2022, 315: 121535. doi: 10.1016/j.apcatb.2022.121535
[6] 刘清泉, 陈景文, 蔡喜运. Fe-TAML催化降解水体中含硫污染物的研究[C]. 第十三届全国水处理化学大会暨海峡两岸水处理化学研讨会, 南京, 2016: 16. LIU Q Q, CHEN J W, CAI X Y. Study on catalytic degradation of sulfur-containing pollutants in water by Fe-TAML[C]. The 13th National Conference on Water Treatment Chemistry and Workshop on Water Treatment Chemistry in the Straits, Nanjing, 2016: 16(in Chinese).
[7] SENTER P D. Potent antibody drug conjugates for cancer therapy[J]. Current Opinion in Chemical Biology, 2009, 13(3): 235-244. doi: 10.1016/j.cbpa.2009.03.023
[8] MUSTAFA M, WINUM J Y. The importance of sulfur-containing motifs in drug design and discovery[J]. Expert Opinion on Drug Discovery, 2022, 17(5): 501-512. doi: 10.1080/17460441.2022.2044783
[9] FENG M H, TANG B Q, LIANG S H, et al. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry[J]. Current Topics in Medicinal Chemistry, 2016, 16(11): 1200-1216. doi: 10.2174/1568026615666150915111741
[10] DEVENDAR P, YANG G F. Sulfur-containing agrochemicals[J]. Topics in Current Chemistry, 2017, 375(6): 82. doi: 10.1007/s41061-017-0169-9
[11] CASIDA J E, FUKUNAGA K. Pesticides: Metabolism, degradation, and mode of action[J]. Science, 1968, 160(3826): 445-450. doi: 10.1126/science.160.3826.445
[12] BIZET V, HENDRIKS C M M, BOLM C. Sulfur imidations: Access to sulfimides and sulfoximines[J]. Chemical Society Reviews, 2015, 44(11): 3378-3390. doi: 10.1039/C5CS00208G
[13] YIN F D, GROSJEAN D, SEINFELD J H. Analysis of atmospheric photooxidation mechanisms for organosulfur compounds[J]. Journal of Geophysical Research:Atmospheres, 1986, 91(D13): 14417-14438. doi: 10.1029/JD091iD13p14417
[14] ZHONG M M, WANG T L, ZHAO W X, et al. Emerging organic contaminants in Chinese surface water: Identification of priority pollutants[J]. Engineering, 2022, 11: 111-125. doi: 10.1016/j.eng.2020.12.023
[15] YANG Y, ZHANG X R, JIANG J Y, et al. Which micropollutants in water environments deserve more attention globally?[J]. Environmental Science & Technology, 2022, 56(1): 13-29.
[16] 张焕军, 王席席, 李轶. 水体中抗生素污染现状及其对氮转化过程的影响研究进展[J]. 环境化学, 2022, 41(4): 1168-1181. doi: 10.7524/j.issn.0254-6108.2021102405 ZHANG H J, WANG X X, LI Y. Progress in current pollution status of antibiotics and their influences on the nitrogen transformation in water[J]. Environmental Chemistry, 2022, 41(4): 1168-1181 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102405
[17] 贺艳, 邓月华. 水环境中新烟碱类农药去除技术研究进展[J]. 环境化学, 2020, 39(7): 1963-1976. doi: 10.7524/j.issn.0254-6108.2019082102 HE Y, DENG Y H. A review on the removal technologies of neonicotinoid pesticides from aquatic environment[J]. Environmental Chemistry, 2020, 39(7): 1963-1976 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019082102
[18] GREGORC A, SILVA-ZACARIN E C M, CARVALHO S M, et al. Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees[J]. Chemosphere, 2016, 147: 328-336. doi: 10.1016/j.chemosphere.2015.12.030
[19] LIN H, NIU J F, XU J L, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution[J]. Electrochimica Acta, 2013, 97: 167-174. doi: 10.1016/j.electacta.2013.03.019
[20] KRAEMER S A, RAMACHANDRAN A, PERRON G G. Antibiotic pollution in the environment: From microbial ecology to public policy[J]. Microorganisms, 2019, 7(6): 180. doi: 10.3390/microorganisms7060180
[21] KOVALAKOVA P, CIZMAS L, McDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351
[22] 文湘华, 申博. 新兴污染物水环境保护标准及其实用型去除技术[J]. 环境科学学报, 2018, 38(3): 847-857. WEN X H, SHEN B. Standards of water environmental protection and practical removal technologies of emerging contaminants[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 847-857 (in Chinese).
[23] BARAN W, ADAMEK E, ZIEMIAŃSKA J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196: 1-15. doi: 10.1016/j.jhazmat.2011.08.082
[24] SINGH R, SINGH A P, KUMAR S, et al. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies[J]. Journal of Cleaner Production, 2019, 234: 1484-1505. doi: 10.1016/j.jclepro.2019.06.243
[25] FANG W D, PENG Y, MUIR D, et al. A critical review of synthetic chemicals in surface waters of the US, the EU and China[J]. Environment International, 2019, 131: 104994. doi: 10.1016/j.envint.2019.104994
[26] TANG F H M, LENZEN M, McBRATNEY A, et al. Risk of pesticide pollution at the global scale[J]. Nature Geoscience, 2021, 14(4): 206-210. doi: 10.1038/s41561-021-00712-5
[27] MUKHOPADHYAY D, KHAN N, KAMAL N, et al. Degradation of β-lactam antibiotic ampicillin using sustainable microbial peroxide producing cell system[J]. Bioresource Technology, 2022, 361: 127605. doi: 10.1016/j.biortech.2022.127605
[28] RAFQAH S, WONG-WAH-CHUNG P, AAMILI A, et al. Degradation of metsulfuron methyl by heterogeneous photocatalysis on TiO2 in aqueous suspensions: Kinetic and analytical studies[J]. Journal of Molecular Catalysis A:Chemical, 2005, 237(1/2): 50-59.
[29] FENOLL J, HELLÍN P, FLORES P, et al. Fipronil decomposition in aqueous semiconductor suspensions using UV light and solar energy[J]. Journal of the Taiwa Institute of Chemical Engineers, 2014, 45(3): 981-988. doi: 10.1016/j.jtice.2013.09.015
[30] PAKZAD K, ALINEZHAD H, NASROLLAHZADEH M. Euphorbia polygonifolia extract assisted biosynthesis of Fe3O4@CuO nanoparticles: Applications in the removal of metronidazole, ciprofloxacin and cephalexin antibiotics from aqueous solutions under UV irradiation[J]. Applied Organometallic Chemistry, 2020, 34(11): e5910. doi: 10.1002/aoc.5910
[31] ZHU W Y, SUN F Q, GOEI R, et al. Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole[J]. Applied Catalysis B:Environmental, 2017, 207: 93-102. doi: 10.1016/j.apcatb.2017.02.012
[32] GAO B R, WANG J, DOU M M, et al. Novel nitrogen-rich g-C3N4 with adjustable energy band by introducing triazole ring for cefotaxime removal[J]. Separation and Purification Technology, 2020, 241: 116576. doi: 10.1016/j.seppur.2020.116576
[33] deLa FLOR M P, CAMARILLO R, MARTÍNEZ F, et al. Synthesis and characterization of bimetallic TiO2/CNT/Pd-Cu for efficient remediation of endocrine disruptors under solar light[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107245. doi: 10.1016/j.jece.2022.107245
[34] CAI Z J, HU X T, LI Z A, et al. Hypercrosslinking porous polymer layers on TiO2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation[J]. Water Research, 2022, 227: 119341. doi: 10.1016/j.watres.2022.119341
[35] LI S, CHEN H, WANG X, et al. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system[J]. Environmental Science and Pollution Research, 2020, 27(23): 29599-29611. doi: 10.1007/s11356-020-09303-0
[36] TRINH T, van den AKKER B, STUETZ R M, et al. Removal of trace organic chemical contaminants by a membrane bioreactor[J]. Water Science and Technology, 2012, 66(9): 1856-1863. doi: 10.2166/wst.2012.374
[37] ZHANG Q H, ZHANG L, LI Z H, et al. Enhancement of fipronil degradation with eliminating its toxicity in a microbial fuel cell and the catabolic versatility of anodic biofilm[J]. Bioresource Technology, 2019, 290: 121723. doi: 10.1016/j.biortech.2019.121723
[38] ZHU F P, DUAN J L, YUAN X Z, et al. Hydrolysis, adsorption, and biodegradation of bensulfuron methyl under methanogenic conditions[J]. Chemosphere, 2018, 199: 138-146. doi: 10.1016/j.chemosphere.2018.01.149
[39] CHEN X C, ZHOU Q Z, LIU F M, et al. Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase[J]. Chemosphere, 2019, 233: 49-56. doi: 10.1016/j.chemosphere.2019.05.144
[40] BOUFERCHA O, MONFORTE A R, BOUDEMAGH A, et al. Biodegradation and metabolic pathway of the neonicotinoid insecticide thiamethoxam by Labrys portucalensis F11[J]. International Journal of Molecular Sciences, 2022, 23(22): 14326. doi: 10.3390/ijms232214326
[41] ANWAR S, WAHLA A Q, ALI T, et al. Biodegradation and subsequent toxicity reduction of Co-contaminants tribenuron methyl and metsulfuron methyl by a bacterial consortium B2R[J]. ACS Omega, 2022, 7(23): 19816-19827. doi: 10.1021/acsomega.2c01583
[42] WANG J L, WANG S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8): 3573-3582. doi: 10.1007/s00253-018-8845-4
[43] 万家秀, 何碧红, 张永合, 等. 水环境中磺胺类抗生素的生物降解[J]. 广州化工, 2022, 50(22): 153-156. doi: 10.3969/j.issn.1001-9677.2022.22.046 WAN J X, HE B H, ZHANG Y H, et al. Biodegradation of sulfa antibiotics in aquatic environment[J]. Guangzhou Chemical Industry, 2022, 50(22): 153-156(in Chinese) doi: 10.3969/j.issn.1001-9677.2022.22.046
[44] ARYEE A A, HAN R P, QU L B. Occurrence, detection and removal of amoxicillin in wastewater: A review[J]. Journal of Cleaner Production, 2022, 368: 133140. doi: 10.1016/j.jclepro.2022.133140
[45] KLARICH K L, PFLUG N C, DeWALD E M, et al. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment[J]. Environmental Science & Technology Letters, 2017, 4(5): 168-173.
[46] FERNANDES J O, BERNARDINO C A R, MAHLER C F, et al. Biochar generated from agro-industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater[J]. Water, Air, & Soil Pollution, 2021, 232(2): 67.
[47] CHEN H, GAO B, LI H. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide[J]. Journal of Hazardous Materials, 2015, 282: 201-207. doi: 10.1016/j.jhazmat.2014.03.063
[48] MEHTA T, RATHI A, VERMA A, et al. Elimination of Fipronil insecticide by adsorption technique from aqueous solution by Cu-13X zeolite composite: Isotherms, kinetic and thermodynamic studies[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(17): 4969-4985. doi: 10.1080/03067319.2020.1790545
[49] RANI M, SHANKER U. Removal of chlorpyrifos, thiamethoxam, and tebuconazole from water using green synthesized metal hexacyanoferrate nanoparticles[J]. Environmental Science and Pollution Research, 2018, 25(11): 10878-10893. doi: 10.1007/s11356-018-1346-2
[50] RAHMAN N, VARSHNEY P. Assessment of ampicillin removal efficiency from aqueous solution by polydopamine/zirconium(Ⅳ) iodate: Optimization by response surface methodology[J]. RSC Advances, 2020, 10(34): 20322-20337. doi: 10.1039/D0RA02061C
[51] WU J, FENG Y Q, DAI Y R, et al. Biological mechanisms associated with triazophos (TAP) removal by horizontal subsurface flow constructed wetlands (HSFCW)[J]. Science of the Total Environment, 2016, 553: 13-19. doi: 10.1016/j.scitotenv.2016.02.067
[52] BESTER K, BANZHAF S, BURKHARDT M, et al. Activated soil filters for removal of biocides from contaminated Run-off and waste-waters[J]. Chemosphere, 2011, 85(8): 1233-1240. doi: 10.1016/j.chemosphere.2011.07.017
[53] HU C Y, CHENG M, LIN Y L. Chlorination of bensulfuron-methyl: Kinetics, reaction factors and disinfection by-product formation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 53: 46-51. doi: 10.1016/j.jtice.2015.02.029
[54] AZAD H, MOHSENNIA M, CHENG C, et al. Cross-linked poly(vinyl butyral)/amine-functionalized polyacrylonitrile adsorptive membrane nano-composited with CeO2 nanoparticles for simultaneous aqueous removal of heavy metals and cefotaxime[J]. Chemical Engineering Journal, 2022, 435: 134849. doi: 10.1016/j.cej.2022.134849