[1] MARTÍNEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews , 2006, 35(12): 1324-1340. doi: 10.1039/B517632H
[2] PANIZZA M, CERISOLA G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569. doi: 10.1021/cr9001319
[3] LIU Y J, MENG X Z, LI C, et al. Electrochemical degradation of pharmaceuticals using Ti/SnO2-Sb2O5-IrO2-RuO2 anode: Electrode properties, performance and contributions of diverse reactive species[J]. Journal of the Electrochemical Society, 2020, 167(14): 143503. doi: 10.1149/1945-7111/abc30b
[4] SUN T, WANG J R, LIU Y J, et al. A comprehensive study on nano-diamond doped β-PbO2 electrode: Preparation, properties and electrocatalytic performance[J]. Journal of the Electrochemical Society, 2019, 166(14): E473-E480. doi: 10.1149/2.0591914jes
[5] CHO K, QU Y, KWON D, et al. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment[J]. Environmental Science & Technology, 2014, 48(4): 2377-2384.
[6] PARK H, VECITIS C D, HOFFMANN M R. Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species[J]. The Journal of Physical Chemistry C, 2009, 113(18): 7935-7945. doi: 10.1021/jp810331w
[7] FERETTI D, ZERBINI I, CERETTI E, et al. Evaluation of chlorite and chlorate genotoxicity using plant bioassays and in vitro DNA damage tests[J]. Water Research, 2008, 42(15): 4075-4082. doi: 10.1016/j.watres.2008.06.018
[8] 颜薇, 余伟, 肖慧吉, 等. 氯酸盐屏蔽废水COD测定的消除策略及反应机制[J]. 环境化学, 2023, 42(8): 2813-2822. doi: 10.7524/j.issn.0254-6108.2022032202 YAN W, YU W, XIAO H J, et al. Elimination strategy and reaction mechanism for the interference of chlorate on COD[J]. Environmental Chemistry, 2023, 42(8): 2813-2822 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022032202
[9] MENG X S, KHOSO S A, LYU F, et al. Study on the influence and mechanism of sodium chlorate on COD reduction of minerals processing wastewater[J]. Minerals Engineering, 2019, 134: 1-6. doi: 10.1016/j.mineng.2019.01.009
[10] 柏平. Mg-Al类水滑石同步去除亚氯酸盐、氯酸盐的试验研究[D]. 杭州: 浙江工业大学, 2016. BAI P. Removal of chlorite and chlorate by Mg-Al layered double hydroxides[D]. Hangzhou: Zhejiang University of Technology, 2016.
[11] YAN Z, XU L M, ZHANG W M, et al. Comparative toxic effects of microplastics and nanoplastics on Chlamydomonas reinhardtii: Growth inhibition, oxidative stress, and cell morphology[J]. Journal of Water Process Engineering, 2021, 43: 102291. doi: 10.1016/j.jwpe.2021.102291
[12] 张小磊, 苍岩, 宋伟, 等. 二氧化氯预氧化含藻水过程中副产物的生成规律[J]. 环境化学 , 2019, 38(2): 306-316. doi: 10.7524/j.issn.0254-6108.2018040203 ZHANG X L, CANG Y, SONG W, et al. By-product formation in algae-containing water pre-oxidized by chlorine dioxide[J]. Environmental Chemistry, 2019,38(2): 306-316 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018040203
[13] 中华人民共和国环境保护部. 水质 化学需氧量的测定 快速消解分光光度法: HJ/T 399—2007[S]. 北京: 中国环境科学出版社, 2008. Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of the chemical oxygen demand-Fast digestion-Spectrophotometric method: HJ/T 399—2007[S]. Beijing: China Environmental Science Press, 2008.
[14] AL MOMANI F, SANS C, ESPLUGAS S. A comparative study of the advanced oxidation of 2, 4-dichlorophenol[J]. Journal of Hazardous Materials, 2004, 107(3): 123-129. doi: 10.1016/j.jhazmat.2003.11.015
[15] WOJNÁROVITS L, WANG J L, CHU L B, et al. Matrix effect in the hydroxyl radical induced degradation of β-lactam and tetracycline type antibiotics[J]. Radiation Physics and Chemistry, 2022, 193: 109980. doi: 10.1016/j.radphyschem.2022.109980
[16] GIANNAKIS S, GAMARRA VIVES F A, GRANDJEAN D, et al. Effect of advanced oxidation processes on the micropollutants and the effluent organic matter contained in municipal wastewater previously treated by three different secondary methods[J]. Water Research, 2015, 84: 295-306. doi: 10.1016/j.watres.2015.07.030
[17] YANG Y, SHIN J, JASPER J T, et al. Multilayer heterojunction anodes for saline wastewater treatment: Design strategies and reactive species generation mechanisms[J]. Environmental Science & Technology, 2016, 50(16): 8780-8787.
[18] JUNG Y J, BAEK K W, OH B S, et al. An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies[J]. Water Research, 2010, 44(18): 5345-5355. doi: 10.1016/j.watres.2010.06.029
[19] YANG C H, LEE C C, WEN T C. Hypochlorite generation on Ru–Pt binary oxide for treatment of dye wastewater[J]. Journal of Applied Electrochemistry, 2000, 30(9): 1043-1051. doi: 10.1023/A:1004038503410
[20] CLARK J A, YANG Y H, RAMOS N C, et al. Selective oxidation of pharmaceuticals and suppression of perchlorate formation during electrolysis of fresh human urine[J]. Water Research, 2021, 198: 117106. doi: 10.1016/j.watres.2021.117106
[21] HENRY BERGMANN M E, ROLLIN J. Product and by-product formation in laboratory studies on disinfection electrolysis of water using boron-doped diamond anodes[J]. Catalysis Today, 2007, 124(3/4): 198-203.
[22] XIAO H J, YAN W, ZHAO Z K, et al. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism[J]. Water Research, 2022, 221: 118732. doi: 10.1016/j.watres.2022.118732
[23] WEAST, ROBERT C. CRC handbook of chemistry and physics [M]. Crc Press, Inc, 1988, 1223-1224.
[24] BROWN G M. The reduction of chlorate and perchlorate ions at an active titanium electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 198(2): 319-330. doi: 10.1016/0022-0728(86)90008-2