[1] |
卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399.
WEI C F, LI J L, SUN Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399 (in Chinese).
|
[2] |
ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11): 6772-6782.
|
[3] |
杨惠程, 崔小燕, 孙千鸿. 环境中四环素类抗生素污染处理技术研究进展[J]. 清洗世界, 2022, 38(9): 81-83.
YANG H C, CUI X Y, SUN Q H. Research progress on treatment technology of tetracycline antibiotics pollution in the environment[J]. Cleaning World, 2022, 38(9): 81-83 (in Chinese).
|
[4] |
YU H Y, WANG X Q, LI F B, et al. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice[J]. Environmental Pollution, 2017, 224: 136-147. doi: 10.1016/j.envpol.2017.01.072
|
[5] |
罗明科. 生物炭接枝和负载改性及其对重金属砷、镉吸附去除性能[D]. 北京: 北京科技大学, 2020.
Luo M. Grafting and loading modification of biochar and its adsorption and removal performance for heavy metals arsenic and cadmium[D]. Beijing: Beijing University of Science and Technology, 2020.
|
[6] |
吕倩, 魏洁云. 中国地下水污染现状及治理[J]. 生态经济, 2016, 32(10): 10-13.
LYU Q, WEI J Y. Current situation and treatment of groundwater pollution in China[J]. Ecological Economy, 2016, 32(10): 10-13 (in Chinese).
|
[7] |
TANG J P, WANG S, TAI Y P, et al. Evaluation of factors influencing annual occurrence, bioaccumulation, and biomagnification of antibiotics in planktonic food webs of a large subtropical river in South China[J]. Water Research, 2020, 170: 115302. doi: 10.1016/j.watres.2019.115302
|
[8] |
王娜, 郭欣妍, 单正军, 等. 农田土壤抗生素污染管控建议[J]. 中国工程科学, 2021, 23(1): 167-173. doi: 10.15302/J-SSCAE-2021.01.023
WANG N, GUO X Y, SHAN Z J, et al. Suggestions for management and control of antibiotics in farmland soil in China[J]. Strategic Study of CAE, 2021, 23(1): 167-173 (in Chinese). doi: 10.15302/J-SSCAE-2021.01.023
|
[9] |
朱冬, 陈青林, 丁晶, 等. 土壤生态系统中抗生素抗性基因与星球健康: 进展与展望[J]. 中国科学:生命科学, 2019, 49(12): 1652-1663. doi: 10.1360/SSV-2019-0267
ZHU D, CHEN Q L, DING J, et al. Antibiotic resistance genes in the soil ecosystem and planetary health: Progress and prospect[J]. Scientia Sinica (Vitae), 2019, 49(12): 1652-1663 (in Chinese). doi: 10.1360/SSV-2019-0267
|
[10] |
SUN J T, ZENG Q T, TSANG D C W, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. Chemosphere, 2017, 189: 301-308. doi: 10.1016/j.chemosphere.2017.09.040
|
[11] |
乔娜. 高铁酸钾控制水体典型抗生素与重金属复合污染的研究[D]. 南京: 东南大学, 2021.
QIAO N. Study on potassium ferrate to control the combined pollution of typical antibiotics and heavy metals in water body[D]. Nanjing: Southeast University, 2021 (in Chinese).
|
[12] |
ZHU W, CHEN Z, PAN Y, et al. Functionalization of hollow nanomaterials for catalytic applications: Nanoreactor construction[J]. Advanced Materials, 2019, 31(38): 1800426. doi: 10.1002/adma.201800426
|
[13] |
SHAHRAM M, ELHAM A. Mesoporous carbon-based materials: A review of synthesis, modification, and applications[J]. Catalysts, 2022, 13(1): 2. doi: 10.3390/catal13010002
|
[14] |
BENZIGAR M R, TALAPANENI S N, JOSEPH S, et al. Recent advances in functionalized micro and mesoporous carbon materials: Synthesis and applications[J]. Chemical Society Reviews, 2018, 47(8): 2680-2721. doi: 10.1039/C7CS00787F
|
[15] |
LINARES N, SILVESTRE-ALBERO A M, SERRANO E, et al. Mesoporous materials for clean energy technologies[J]. Chemical Society Reviews, 2014, 43(22): 7681-7717. doi: 10.1039/C3CS60435G
|
[16] |
张巧利, 徐强, 张媛媛, 等. 磁性介孔碳的制备及对水体中染料的吸附去除[J]. 环境化学, 2018, 37(11): 2548-2554. doi: 10.7524/j.issn.0254-6108.2018020503
ZHANG Q L, XU Q, ZHANG Y Y, et al. Preparation of magnetic mesoporous carbon and its application for dyes removal from water[J]. Environmental Chemistry, 2018, 37(11): 2548-2554 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018020503
|
[17] |
QIAO Z A, ZHANG P F, CHAI S H, et al. Lab-in-a-shell: Encapsulating metal clusters for size sieving catalysis[J]. Journal of the American Chemical Society, 2014, 136(32): 11260-11263. doi: 10.1021/ja505903r
|
[18] |
屈佳, 李美兰, 黄宏普, 等. 有序介孔碳的模板化构筑及其水处理应用研究[J]. 精细化工, 2020, 37(12): 2435-2446.
QU J, LI M L, HUANG H P, et al. Template construction of ordered mesoporous carbon materials and their applications in water treatment[J]. Fine Chemicals, 2020, 37(12): 2435-2446 (in Chinese).
|
[19] |
田喜强, 赵宏吉, 董艳萍, 等. 介孔碳的合成及水处理的研究进展[J]. 化学工程师, 2019, 33(1): 49-52.
TIAN X Q, ZHAO H J, DONG Y P, et al. Research progress in synthesis of mesoporous carbon and water treatment[J]. Chemical Engineer, 2019, 33(1): 49-52 (in Chinese).
|
[20] |
XI J G, LI H, XI J M, et al. Preparation of high porosity biochar materials by template method: A review[J]. Environmental Science and Pollution Research, 2020, 27(17): 20675-20684. doi: 10.1007/s11356-020-08593-8
|
[21] |
赵宝龙. 生物质源多孔炭材料的制备及对四环素的吸附性能研究[D]. 郑州: 华北水利水电大学, 2021.
ZHAO B L. Preparation of biomass-derived porous carbon materials and study on its adsorption performance for tetracycline[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021 (in Chinese).
|
[22] |
ÜNER O, GEÇGEL Ü, BAYRAK Y. Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride[J]. Arabian Journal of Chemistry, 2019, 12(8): 3621-3627. doi: 10.1016/j.arabjc.2015.12.004
|
[23] |
GHOUMA I, JEGUIRIM M, DORGE S, et al. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature[J]. Comptes Rendus Chimie, 2015, 18(1): 63-74.
|
[24] |
汪佳玥, 凌茜, 张雲豪, 等. 生物炭制备方法及其在环境污染治理中的应用研究[J]. 南通大学学报(自然科学版), 2022, 21(4): 1-14.
WANG J Y, LING (Q /X), ZHANG Y H, et al. Study on preparation method of biochar and its application in environmental pollution control[J]. Journal of Nantong University (Natural Science Edition), 2022, 21(4): 1-14 (in Chinese).
|
[25] |
ZHANG H Y, YUE X P, LI F, et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. Science of the Total Environment, 2018, 631/632: 795-802. doi: 10.1016/j.scitotenv.2018.03.071
|
[26] |
HAO M J, QIU M Q, YANG H, et al. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis[J]. Science of the Total Environment, 2021, 760: 143333. doi: 10.1016/j.scitotenv.2020.143333
|
[27] |
赵筱茜, 王聪, 田勇, 等. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
ZHAO X (Q /X), WANG C, TIAN Y, et al. Preparation of mesoporous carbon materials by microemulsion method[J]. Progress in Chemistry, 2022, 34(10): 2316-2328 (in Chinese).
|
[28] |
王旭阳, 汪颖军, 所艳华, 等. MCM-48介孔材料的制备及其催化应用的研究进展[J]. 化学与粘合, 2020, 42(5): 383-387.
WANG X Y, WANG Y J, SUO Y H, et al. Research progress in preparation and catalytic application of MCM-48 mesoporous materials[J]. Chemistry and Adhesion, 2020, 42(5): 383-387 (in Chinese).
|
[29] |
LIANG M N, LU L, HE H J, et al. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review[J]. Sustainability, 2021, 13(24): 14041. doi: 10.3390/su132414041
|
[30] |
江湛如, 汤媛媛, 李冰玉, 等. 磁性海藻酸铁介孔碳微球的合成及对水体中砷的去除[J]. 环境科学学报, 2018, 38(6): 2382-2392.
JIANG Z R, TANG Y Y, LI B Y, et al. Synthesis of magnetic alginate mesoporous carbon for the removal of As from water solution[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2382-2392 (in Chinese).
|
[31] |
冯彦房, 薛利红, 杨梖, 等. 载镧生物炭的优化制备及其对水体中砷的吸附[J]. 中国环境科学, 2015, 35(8): 2433-2441.
FENG Y F, XUE L H, YANG B, et al. Optimized preparation of lanthanum uploaded biochar and its application in adsorbing pentavalent arsenic ions from aqueous solution[J]. China Environmental Science, 2015, 35(8): 2433-2441 (in Chinese).
|
[32] |
梁欣冉, 何丹, 郑曌华, 等. 两种铁改性生物炭对微碱性砷镉污染土壤的修复效果[J]. 环境科学, 2023, 44(7): 4100-4108.
LIANG X R, HE D, ZHENG Z H, et al. Remediation effect of two iron-modified biochars on slightly alkaline arsenic and cadmium contaminated soil[J]. Environmental Science, 2023, 44(7): 4100-4108 (in Chinese).
|
[33] |
QIAN Z Y, XUE S G, CUI M Q, et al. Arsenic availability and transportation in soil-rice system affected by iron-modified biochar[J]. Journal of Central South University, 2021, 28(6): 1901-1918. doi: 10.1007/s11771-021-4738-2
|
[34] |
LI C Y, ZHU X X, HE H L, et al. Adsorption of two antibiotics on biochar prepared in air-containing atmosphere: Influence of biochar porosity and molecular size of antibiotics[J]. Journal of Molecular Liquids, 2019, 274: 353-361. doi: 10.1016/j.molliq.2018.10.142
|
[35] |
马锋锋, 张建, 赵保卫, 等. β-环糊精改性猪粪生物炭对水中四环素的吸附特性及机制[J]. 环境工程学报, 2022, 16(8): 2480-2489.
MA F F, ZHANG J, ZHAO B W, et al. Adsorption characteristics and mechanism of tetracycline in water by swine manure biochar modified with β-cyclodextrin[J]. Chinese Journal of Environmental Engineering, 2022, 16(8): 2480-2489 (in Chinese).
|
[36] |
徐晋, 马一凡, 姚国庆, 等. KOH活化小麦秸秆生物炭对废水中四环素的高效去除[J]. 环境科学, 2022, 43(12): 5635-5646.
XU J, MA Y F, YAO G Q, et al. Efficient removal of tetracycline from wastewater by KOH activated wheat straw biochar[J]. Environmental Science, 2022, 43(12): 5635-5646 (in Chinese).
|
[37] |
李文斌, 陈芯怡, 邓红艳, 等. 外源生物炭对嘉陵江流域川渝段沿岸土壤四环素吸附特征的影响[J]. 土壤通报, 2020, 51(2): 487-495.
LI W B, CHEN X Y, DENG H Y, et al. Effects of exogenous biochar on tetracycline adsorption by different riverbank soils from Sichuan and Chongqing section of Jialing River[J]. Chinese Journal of Soil Science, 2020, 51(2): 487-495 (in Chinese).
|
[38] |
李慧君, 卫婷, 黄枫城, 等. 生物炭对四环素污染土壤微生物群落结构的影响及环境因子关联的剂量效应分析[J]. 农业环境科学学报, 2023, 42(1): 101-111.
LI H J, WEI T, HUANG F C, et al. Effect of biochar on microbial community structure in tetracycline contaminated soil and dose-effect analysis of environmental factors[J]. Journal of Agro-Environment Science, 2023, 42(1): 101-111 (in Chinese).
|
[39] |
刘子璇. 风车草生物炭负载纳米铁对水体中Cd、As、四环素的去除效应研究[D]. 长沙: 中南林业科技大学, 2021.
LIU Z X. Study on the removal effect of Cd, As and tetracycline in water by nano-iron loaded on Cyperus alterniflora biochar[D]. Changsha: Central South University of Forestry & Technology, 2021 (in Chinese).
|
[40] |
刘文贵. 稻床养鸡固废中残留抗生素和砷的微波处理研究[D]. 武汉: 华中科技大学, 2015.
LIU W G. Study on microwave treatment of residual antibiotics and arsenic in rice bed chicken solid waste[D]. Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese).
|
[41] |
ZHANG D W, HE Q Q, HU X L, et al. Enhanced adsorption for the removal of tetracycline hydrochloride (TC) using ball-milled biochar derived from crayfish shell[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 615: 126254. doi: 10.1016/j.colsurfa.2021.126254
|
[42] |
MERODIO-MORALES E E, REYNEL-ÁVILA H E, MENDOZA-CASTILLO D I, et al. Lanthanum- and cerium-based functionalization of chars and activated carbons for the adsorption of fluoride and arsenic ions[J]. International Journal of Environmental Science and Technology, 2020, 17(1): 115-128. doi: 10.1007/s13762-019-02437-w
|
[43] |
LI X P, WANG C B, ZHANG J G, et al. Preparation and application of magnetic biochar in water treatment: A critical review[J]. Science of the Total Environment, 2020, 711: 134847. doi: 10.1016/j.scitotenv.2019.134847
|
[44] |
阮华珍, 高章龙, 陈玉婷, 等. 共存钙离子对镧铝改性稻壳生物炭除磷性能的影响[J]. 环境化学, 2020, 39(5): 1279-1289. doi: 10.7524/j.issn.0254-6108.2019070802
RUAN H Z, GAO Z L, CHEN Y T, et al. Effect of coexisting calcium ions on phosphate removal performance of lanthanum and aluminum modified rice husk biochar[J]. Environmental Chemistry, 2020, 39(5): 1279-1289 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019070802
|
[45] |
WANG Z R, CAI X W, XIE X Y, et al. Visible-LED-light-driven photocatalytic degradation of ofloxacin and ciprofloxacin by magnetic biochar modified flower-like Bi2WO6: The synergistic effects, mechanism insights and degradation pathways[J]. Science of the Total Environment, 2021, 764: 142879. doi: 10.1016/j.scitotenv.2020.142879
|
[46] |
许亚琼, 王雪佳, 李荣华, 等. 纳米零价铁改性生物炭对污染土壤中Cd稳定化效果及作用机制研究[J]. 农业环境科学学报, 2022, 41(11): 2478-2487.
XU Y Q, WANG X J, LI R H, et al. Study on the stabilization effect and mechanism of nano-zero-valent iron modified biochar on Cd in polluted soil[J]. Journal of Agro-Environment Science, 2022, 41(11): 2478-2487 (in Chinese).
|
[47] |
VITHANAGE M, HERATH I, JOSEPH S, et al. Interaction of arsenic with biochar in soil and water: A critical review[J]. Carbon, 2017, 113: 219-230. doi: 10.1016/j.carbon.2016.11.032
|
[48] |
汤冬梅, 武俊梅, 黄永炳, 等. 生物炭添加对土壤中抗生素和抗性基因的环境行为影响研究进展[J]. 环境化学, 2022, 41(6): 1957-1966. doi: 10.7524/j.issn.0254-6108.2021022201
TANG D M, WU J M, HUANG Y B, et al. Research advances in the effect of biochar amendment on environmental behaviors of antibiotics and antibiotic resistance genes in soils[J]. Environmental Chemistry, 2022, 41(6): 1957-1966 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022201
|
[49] |
JI X W, WAN J, WANG X D, et al. Mixed bacteria-loaded biochar for the immobilization of arsenic, lead, and cadmium in a polluted soil system: Effects and mechanisms[J]. Science of the Total Environment, 2022, 811: 152112. doi: 10.1016/j.scitotenv.2021.152112
|
[50] |
王玉洁, 唐宇嘉, 张亚平, 等. 生物炭对土壤中抗生素抗性基因的阻控潜力及机制研究进展[J]. 应用生态学报, 2022, 33(11): 3116-3126.
WANG Y J, TANG Y J, ZHANG Y P, et al. Retarding potential of biochar on antibiotic resistance genes in soil and the mechanisms: A review[J]. Chinese Journal of Applied Ecology, 2022, 33(11): 3116-3126 (in Chinese).
|
[51] |
LIU J X, ZHANG W J, MEI M, et al. A Ca-rich biochar derived from food waste digestate with exceptional adsorption capacity for arsenic (III) removal via a cooperative mechanism[J]. Separation and Purification Technology, 2022, 295: 121359. doi: 10.1016/j.seppur.2022.121359
|
[52] |
ZHAO Y L, SHI H, TANG X, et al. Performance and mechanism of As(III/V) removal from aqueous solution by Fe3O4-sunflower straw biochar[J]. Toxics, 2022, 10(9): 534. doi: 10.3390/toxics10090534
|
[53] |
KUMAR A, BHATTACHARYA T. Removal of arsenic by wheat straw biochar from soil[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(3): 415-422. doi: 10.1007/s00128-020-03095-2
|
[54] |
SUN T, PEI P G, SUN Y B, et al. Performance and mechanism of As(III/Ⅴ) removal from aqueous solution by novel positively charged animal-derived biochar[J]. Separation and Purification Technology, 2022, 290: 120836. doi: 10.1016/j.seppur.2022.120836
|
[55] |
ZHAO Z L, HUANG F, LIU Z T, et al. Quantification adsorption mechanisms of arsenic by goethite-modified biochar in aqueous solution[J]. Environmental Science and Pollution Research, 2023, 30(30): 74791-74807. doi: 10.1007/s11356-023-27585-y
|
[56] |
BABAEI K, SALIMI S, MAHMOUDABADI Z S, et al. Synthesis and application of chicken manure biochar as an effective nanoporous adsorbent for removal of arsenic from wastewater: A cost-effective approach[J]. Journal of the Iranian Chemical Society, 2023, 20(3): 541-550. doi: 10.1007/s13738-022-02686-6
|
[57] |
CHEN C K, CHEN J J, NGUYEN N T, et al. Specifically designed magnetic biochar from waste wood for arsenic removal[J]. Sustainable Environment Research, 2021, 31(1): 1-16. doi: 10.1186/s42834-020-00075-3
|
[58] |
FAN Z, FANG J E, ZHANG G L, et al. Improved adsorption of tetracycline in water by a modified Caulis spatholobi residue biochar[J]. ACS Omega, 2022, 7(34): 30543-30553. doi: 10.1021/acsomega.2c04033
|
[59] |
ZHANG Z L, LI Y, DING L, et al. Novel sodium bicarbonate activation of cassava ethanol sludge derived biochar for removing tetracycline from aqueous solution: Performance assessment and mechanism insight[J]. Bioresource Technology, 2021, 330: 124949. doi: 10.1016/j.biortech.2021.124949
|
[60] |
NIE Y, ZHAO C W, ZHOU Z Y, et al. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism[J]. Bioresource Technology, 2023, 383: 129224. doi: 10.1016/j.biortech.2023.129224
|
[61] |
ZHENG Z H, ZHAO B L, GUO Y P, et al. Preparation of mesoporous batatas biochar via soft-template method for high efficiency removal of tetracycline[J]. Science of the Total Environment, 2021, 787: 147397. doi: 10.1016/j.scitotenv.2021.147397
|
[62] |
SHI Q Y, WANG W B, ZHANG H M, et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal[J]. Bioresource Technology, 2023, 383: 129213. doi: 10.1016/j.biortech.2023.129213
|
[63] |
LI H Y, YE X X, GENG Z G, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40-48. doi: 10.1016/j.jhazmat.2015.10.048
|
[64] |
ZOROUFCHI BENIS K, SOLTAN J, McPHEDRAN K N. Electrochemically modified adsorbents for treatment of aqueous arsenic: Pore diffusion in modified biomass vs. biochar[J]. Chemical Engineering Journal, 2021, 423: 130061. doi: 10.1016/j.cej.2021.130061
|
[65] |
PAN X Q, GU Z P, CHEN W M, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review[J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104
|
[66] |
NIAZI N K, BIBI I, SHAHID M, et al. Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: An integrated spectroscopic and microscopic examination[J]. Environmental Pollution, 2018, 232: 31-41. doi: 10.1016/j.envpol.2017.09.051
|
[67] |
LIN H, HAN S K, DONG Y B, et al. The surface characteristics of hyperbranched polyamide modified corncob and its adsorption property for Cr(VI)[J]. Applied Surface Science, 2017, 412: 152-159. doi: 10.1016/j.apsusc.2017.03.061
|
[68] |
ZHANG W, CHO Y, VITHANAGE M, et al. Arsenic removal from water and soils using pristine and modified biochars[J]. Biochar, 2022, 4(1): 55. doi: 10.1007/s42773-022-00181-y
|
[69] |
HU H, ZHANG J Y, WANG T, et al. Adsorption of toxic metal ion in agricultural wastewater by torrefaction biochar from bamboo shoot shell[J]. Journal of Cleaner Production, 2022, 338: 130558. doi: 10.1016/j.jclepro.2022.130558
|
[70] |
HU Y, CHEN D Z, ZHANG R, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials, 2021, 419: 126495. doi: 10.1016/j.jhazmat.2021.126495
|
[71] |
SHIRANI Z, SONG H, BHATNAGAR A. Efficient removal of diclofenac and cephalexin from aqueous solution using Anthriscus sylvestris-derived activated biochar[J]. Science of the Total Environment, 2020, 745: 140789. doi: 10.1016/j.scitotenv.2020.140789
|
[72] |
PAN J Y, BAI X T, LI Y Y, et al. HKUST-1 derived carbon adsorbents for tetracycline removal with excellent adsorption performance[J]. Environmental Research, 2022, 205: 112425. doi: 10.1016/j.envres.2021.112425
|
[73] |
KIM H B, KIM S H, JEON E K, et al. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil[J]. Science of the Total Environment, 2018, 636: 1241-1248. doi: 10.1016/j.scitotenv.2018.04.406
|
[74] |
JEON E K, RYU S, PARK S W, et al. Enhanced adsorption of arsenic onto alum sludge modified by calcination[J]. Journal of Cleaner Production, 2018, 176: 54-62. doi: 10.1016/j.jclepro.2017.12.153
|
[75] |
WU C, LI F, YI S W, et al. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment[J]. Journal of Environmental Management, 2021, 296: 113185. doi: 10.1016/j.jenvman.2021.113185
|