[1] CAI Z Q, SUN Y M, LIU W, et al. An overview of nanomaterials applied for removing dyes from wastewater[J]. Environmental Science and Pollution Research, 2017, 24(19): 15882-15904. doi: 10.1007/s11356-017-9003-8
[2] AHMADIJOKANI F, MOLAVI H, BAHI A, et al. Electrospun nanofibers of chitosan/polyvinyl alcohol/UiO-66/nanodiamond: Versatile adsorbents for wastewater remediation and organic dye removal[J]. Chemical Engineering Journal, 2023, 457: 141176. doi: 10.1016/j.cej.2022.141176
[3] SAAD I, RALHA N, ABUKHADRA M R, et al. Recent advances in photocatalytic oxidation techniques for decontamination of water[J]. Journal of Water Process Engineering, 2023, 52: 103572. doi: 10.1016/j.jwpe.2023.103572
[4] MOKHTARI N, DINARI M, FASHANDI H. Developing polysulfone-based mixed matrix membrane containing hydrazone-linked covalent organic frameworks towards dye wastewater purification[J]. Chemical Engineering Journal, 2022, 446: 137456. doi: 10.1016/j.cej.2022.137456
[5] CASTAÑEDA-DÍAZ J, PAVÓN-SILVA T, GUTIÉRREZ-SEGURA E, et al. Electrocoagulation-adsorption to remove anionic and cationic dyes from aqueous solution by PV-energy[J]. Journal of Chemistry, 2017, 2017: 1-14.
[6] DUAN Z B, LI Y L, ZHANG M, et al. Towards cleaner wastewater treatment for special removal of cationic organic dye pollutants: A case study on application of supramolecular inclusion technology with β-cyclodextrin derivatives[J]. Journal of Cleaner Production, 2020, 256: 120308. doi: 10.1016/j.jclepro.2020.120308
[7] JIA B P, ZHANG W. Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review[J]. Nanoscale Research Letters, 2016, 11(1): 64. doi: 10.1186/s11671-016-1284-1
[8] BAYRAM E, AYRANCI E. Structural effects on electrosorptive behavior of aromatic organic acids from aqueous solutions onto activated carbon cloth electrode of a flow-through electrolytic cell[J]. Journal of Electroanalytical Chemistry, 2012, 683: 14-20. doi: 10.1016/j.jelechem.2012.07.028
[9] SENOUSSI H, BOUHIDEL K E. Feasibility and optimisation of a batch mode capacitive deionization (BM CDI) process for textile cationic dyes (TCD) removal and recovery from industrial wastewaters[J]. Journal of Cleaner Production, 2018, 205: 721-727. doi: 10.1016/j.jclepro.2018.09.026
[10] TANG K X, ZHENG H, DU P H, et al. Simultaneous fractionation, desalination, and dye removal of dye/salt mixtures by carbon cloth-modified flow-electrode capacitive deionization[J]. Environmental Science & Technology, 2022, 56(12): 8885-8896.
[11] KIM Y J, CHOI J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44(3): 990-996. doi: 10.1016/j.watres.2009.10.017
[12] PORADA S, ZHAO R, van der WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
[13] MINKE C, KUNZ U, TUREK T. Carbon felt and carbon fiber - A techno-economic assessment of felt electrodes for redox flow battery applications[J]. Journal of Power Sources, 2017, 342: 116-124. doi: 10.1016/j.jpowsour.2016.12.039
[14] PIGNOL G, BASSIL P, FONTMORIN J M, et al. Electrochemical properties of carbon fibers from felts[J]. Molecules, 2022, 27(19): 6584. doi: 10.3390/molecules27196584
[15] SARDINHA A F, ALMEIDA D A L, VERNASQUI L G, et al. Electrochemical response enhancement of CF and GO/CF composites using a promising CF etching[J]. Diamond and Related Materials, 2020, 108: 107997. doi: 10.1016/j.diamond.2020.107997
[16] TANG W W, HE D, ZHANG C Y, et al. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes[J]. Water Research, 2017, 120: 229-237. doi: 10.1016/j.watres.2017.05.009
[17] BAI X Y, SUN H C, SUN J, et al. Efficient removal of sixteen priority polycyclic aromatic hydrocarbons from textile dyeing sludge using electrochemical Fe2+-activated peroxymonosulfate oxidation-a green pretreatment strategy for textile dyeing sludge toxicity reduction[J]. Journal of Hazardous Materials, 2022, 435: 129087. doi: 10.1016/j.jhazmat.2022.129087
[18] LU J S, LI W W, KANG H L, et al. Microstructure and properties of polyacrylonitrile based carbon fibers[J]. Polymer Testing, 2020, 81: 106267. doi: 10.1016/j.polymertesting.2019.106267
[19] WANG Y, LIN Y, YANG C P, et al. Calcination temperature regulates non-radical pathways of peroxymonosulfate activation via carbon catalysts doped by iron and nitrogen[J]. Chemical Engineering Journal, 2023, 451: 138468. doi: 10.1016/j.cej.2022.138468
[20] ZHAO C, MENG L H, CHU H Y, et al. Ultrafast degradation of emerging organic pollutants via activation of peroxymonosulfate over Fe3C/Fe@N-C-x: Singlet oxygen evolution and electron-transfer mechanisms[J]. Applied Catalysis B:Environmental, 2023, 321: 122034. doi: 10.1016/j.apcatb.2022.122034
[21] ZHANG Q L, CHENG Y L, FANG C Q, et al. Electrochemically enhanced adsorption of organic dyes from aqueous using a freestanding metal-organic frameworks/cellulose-derived porous monolithic carbon foam[J]. Bioresource Technology, 2022, 347: 126424. doi: 10.1016/j.biortech.2021.126424
[22] SHEN G, MA J J, NIU J R, et al. Mechanism of ball milled activated carbon in improving the desalination performance of flow- and fixed-electrode in capacitive deionization desalination[J]. Frontiers of Environmental Science & Engineering, 2023, 17(5): 64.
[23] QIU S Y, WANG Y, WAN J Q, et al. Enhanced electro-Fenton catalytic performance with in situ grown Ce/Fe@NPC-GF as self-standing cathode: Fabrication, influence factors and mechanism[J]. Chemosphere, 2021, 273: 130269. doi: 10.1016/j.chemosphere.2021.130269
[24] XIE F S, SHI Q Y, BAI H L, et al. An anode fabricated by co electrodeposition on ZIF-8/CNTs/CF for peroxymonosulfate (PMS) activation[J]. Chemosphere, 2023, 313: 137384. doi: 10.1016/j.chemosphere.2022.137384
[25] SUN N, ZHOU H J, ZHANG H M, et al. Synchronous removal of tetracycline and water hardness ions by capacitive deionization[J]. Journal of Cleaner Production, 2021, 316: 128251. doi: 10.1016/j.jclepro.2021.128251
[26] ARAB C, EL KURDI R, PATRA D. Effect of pH on the removal of anionic and cationic dyes using zinc curcumin oxide nanoparticles as adsorbent[J]. Materials Chemistry and Physics, 2022, 277: 125504. doi: 10.1016/j.matchemphys.2021.125504
[27] ZHAO C H, SHAO B B, YAN M, et al. Activation of peroxymonosulfate by biochar-based catalysts and applications in the degradation of organic contaminants: A review[J]. Chemical Engineering Journal, 2021, 416: 128829. doi: 10.1016/j.cej.2021.128829
[28] XIA C, XIA Y, ZHU P, et al. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte[J]. Science, 2019, 366(6462): 226-231. doi: 10.1126/science.aay1844
[29] DUAN L S, LIU X H, ZHANG H D, et al. A novel way for hydroxyl radicals generation: Biochar-supported zero-valent iron composite activates oxygen to generate hydroxyl radicals[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108132. doi: 10.1016/j.jece.2022.108132
[30] ZHANG J, LV S Y, YU Q, et al. Degradation of sulfamethoxazole in microbubble ozonation process: Performance, reaction mechanism and toxicity assessment[J]. Separation and Purification Technology, 2023, 311: 123262. doi: 10.1016/j.seppur.2023.123262
[31] JO W K, KUMAR S, ISAACS M A, et al. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red[J]. Applied Catalysis B:Environmental, 2017, 201: 159-168. doi: 10.1016/j.apcatb.2016.08.022
[32] ASSES N, AYED L, HKIRI N, et al. Congo red decolorization and detoxification by Aspergillus niger: Removal mechanisms and dye degradation pathway[J]. BioMed Research International, 2018, 2018: 3049686.