[1] |
FANG T, LAKEY P S J, WEBER R J, et al. Oxidative potential of particulate matter and generation of reactive oxygen species in epithelial lining fluid[J]. Environmental Science & Technology, 2019, 53(21): 12784-12792.
|
[2] |
BAO M Y, ZHANG Y L, CAO F, et al. Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China[J]. Environmental Research, 2022, 206: 112554. doi: 10.1016/j.envres.2021.112554
|
[3] |
MA Y Q, CHENG Y B, QIU X H, et al. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing[J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5607-5617. doi: 10.5194/acp-18-5607-2018
|
[4] |
MA Y Q, CHENG Y B, QIU X H, et al. Optical properties, source apportionment and redox activity of humic-like substances (HULIS) in airborne fine particulates in Hong Kong[J]. Environmental Pollution, 2019, 255(Pt 1): 113087.
|
[5] |
吴继炎, 杨池, 张春燕, 等. 保定市冬季PM2.5的氧化潜势特征及其影响来源分析[J]. 环境科学, 2022, 43(6): 2878-2887.
WU J Y, YANG C, ZHANG C Y, et al. Analysis on the characteristics of oxidation potential and influence sources of PM2.5 in Baoding city in winter[J]. Environmental Science, 2022, 43(6): 2878-2887 (in Chinese).
|
[6] |
DAELLENBACH K R, UZU G, JIANG J H, et al. Sources of particulate-matter air pollution and its oxidative potential in Europe[J]. Nature, 2020, 587(7834): 414-419. doi: 10.1038/s41586-020-2902-8
|
[7] |
SAMUËL W, GAËLLE U, OLIVIER F, et al. Source apportionment of atmospheric PM10 oxidative potential: Synthesis of 15 year-round urban datasets in France[J]. Atmospheric Chemistry and Physics, 2021, 21(14): 11353-11378. doi: 10.5194/acp-21-11353-2021
|
[8] |
HONG Y H, CAO F, FAN M Y, et al. Using machine learning to quantify sources of light-absorbing water-soluble humic-like substances (HULISws) in Northeast China[J]. Atmospheric Environment, 2022, 291: 119371. doi: 10.1016/j.atmosenv.2022.119371
|
[9] |
GRANGE S K, UZU G, WEBER S, et al. Linking Switzerland’s PM10 and PM2.5 oxidative potential (OP) with emission sources[J]. Atmospheric Chemistry and Physics, 2022, 22(10): 7029-7050. doi: 10.5194/acp-22-7029-2022
|
[10] |
WANG Y Q, YAO Q M, KWOK J T, et al. Generalizing from a few examples: A survey on few-shot learning[J]. ACM Computing Surveys, 53(3):1-34.
|
[11] |
WRIGHT M N, ZIEGLER A. A fast implementation of random forests for high dimensional data in C++ and R[J]. Journal of Statistical Software, 2017, 77(1): 1-17.
|
[12] |
WU X, CAO F, HAQUE M, et al. Molecular composition and source apportionment of fine organic aerosols in Northeast China[J]. Atmospheric Environment, 2020, 239: 117722. doi: 10.1016/j.atmosenv.2020.117722
|
[13] |
HAQUE M M, FANG C, SCHNELLE-KREIS J, et al. Regional haze formation enhanced the atmospheric pollution levels in the Yangtze River Delta region, China: Implications for anthropogenic sources and secondary aerosol formation[J]. The Science of the Total Environment, 2020, 728: 138013. doi: 10.1016/j.scitotenv.2020.138013
|
[14] |
范美益, 曹芳, 张园园, 等. 徐州市冬季大气细颗粒物水溶性无机离子污染特征及来源解析[J]. 环境科学, 2017, 38(11): 4478-4485.
FAN M Y, CAO F, ZHANG Y Y, et al. Characteristics and sources of water soluble inorganic ions in fine particulate matter during winter in Xuzhou[J]. Environmental Science, 2017, 38(11): 4478-4485 (in Chinese).
|
[15] |
洪一航, 曹芳, 鲍孟盈, 等. 南京秋季大气PM2.5中类腐殖质的光学性质与来源分析[J]. 环境化学, 2021, 40(1): 301-311. doi: 10.7524/j.issn.0254-6108.2020021201
HONG Y H, CAO F, BAO M Y, et al. Optical properties and source apportionment of humic-like substances (HULIS) in Nanjing atmospheric PM2.5 in autumn[J]. Environmental Chemistry, 2021, 40(1): 301-311 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020021201
|
[16] |
HONG Y H, CAO F, FAN M Y, et al. Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China[J]. The Science of the Total Environment, 2022, 819: 152007. doi: 10.1016/j.scitotenv.2021.152007
|
[17] |
LI Y M, FU T M, YU J Z, et al. Impacts of chemical degradation on the global budget of atmospheric levoglucosan and its use As a biomass burning tracer[J]. Environmental Science & Technology, 2021, 55(8): 5525-5536.
|
[18] |
WU J Y, YANG C, ZHANG C Y, et al. Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA)[J]. Atmospheric Measurement Techniques, 2022, 15(8): 2623-2633. doi: 10.5194/amt-15-2623-2022
|
[19] |
PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203
|
[20] |
PISSO I, SOLLUM E, GRYTHE H, et al. The Lagrangian particle dispersion model FLEXPART version 10.4[J]. Geoscientific Model Development, 2019, 12(12): 4955-4997. doi: 10.5194/gmd-12-4955-2019
|
[21] |
LIN Y C, ZHANG Y L, YU M Y, et al. Formation mechanisms and source apportionments of airborne nitrate aerosols at a himalayan-tibetan plateau site: Insights from nitrogen and oxygen isotopic compositions[J]. Environmental Science & Technology, 2021, 55(18): 12261-12271.
|
[22] |
AN X Q, YAO B, LI Y, et al. Tracking source area of Shangdianzi Station using Lagrangian particle dispersion model of FLEXPART[J]. Meteorological Applications, 2014, 21(3): 466-473. doi: 10.1002/met.1358
|
[23] |
LIN Y C, YU M Y, XIE F, et al. Anthropogenic emission sources of sulfate aerosols in Hangzhou, east China: Insights from isotope techniques with consideration of fractionation effects between gas-to-particle transformations[J]. Environmental Science & Technology, 2022, 56(7): 3905-3914.
|
[24] |
FAN M Y, ZHANG Y L, LIN Y C, et al. Important role of NO3 radical to nitrate formation aloft in urban Beijing: Insights from triple oxygen isotopes measured at the tower[J]. Environmental Science & Technology, 2022, 56(11): 6870-6879.
|
[25] |
ZHAO Z Y, CAO F, FAN M Y, et al. Coal and biomass burning as major emissions of NO x in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols[J]. Atmospheric Environment, 2020, 242: 117762. doi: 10.1016/j.atmosenv.2020.117762
|
[26] |
LU S L, WIN M S, ZENG J Y, et al. A characterization of HULIS-C and the oxidative potential of HULIS and HULIS-Fe(Ⅱ) mixture in PM2.5 during hazy and non-hazy days in Shanghai[J]. Atmospheric Environment, 2019, 219: 117058. doi: 10.1016/j.atmosenv.2019.117058
|
[27] |
ZHOU J, ELSER M, HUANG R J, et al. Predominance of secondary organic aerosol to particle-bound reactive oxygen species activity in fine ambient aerosol[J]. Atmospheric Chemistry and Physics, 2019, 19(23): 14703-14720 doi: 10.5194/acp-19-14703-2019
|
[28] |
吴瑕. 哈长城市群冬季细颗粒物中有机气溶胶组成特征及来源[D]. 南京: 南京信息工程大学, 2020.
WU X. Characterization and sources apportionment of chemical composition of PM2.5 in hachang city group in winter[D]. Nanjing: Nanjing University of Information Science & Technology, 2020 (in Chinese).
|
[29] |
SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood[J]. Environmental Science & Technology, 2001, 35(9): 1716-1728.
|
[30] |
SIMONEIT B R T, ELIAS V O, KOBAYASHI M, et al. Sugars: Dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter[J]. Environmental Science & Technology, 2004, 38(22): 5939-5949.
|
[31] |
DING X, WANG X M, XIE Z Q, et al. Impacts of Siberian biomass burning on organic aerosols over the North Pacific Ocean and the Arctic: Primary and secondary organic tracers[J]. Environmental Science & Technology, 2013, 47(7): 3149-3157.
|
[32] |
CHEN X C, CHUANG H C, WARD T J, et al. Toxicological effects of personal exposure to fine particles in adult residents of Hong Kong[J]. Environmental Pollution, 2021, 275: 116633. doi: 10.1016/j.envpol.2021.116633
|
[33] |
ZHOU J, ZOTTER P, BRUNS E A, et al. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions[J]. Atmospheric Chemistry and Physics, 2018, 18(10): 6985-7000. doi: 10.5194/acp-18-6985-2018
|
[34] |
GUNSCH M J, SCHMIDT S A, GARDNER D J, et al. Particle growth in an isoprene-rich forest: Influences of urban, wildfire, and biogenic air masses[J]. Atmospheric Environment, 2018, 178: 255-264. doi: 10.1016/j.atmosenv.2018.01.058
|
[35] |
TAKAHASHI M, FENG Z Z, MIKHAILOVA T A, et al. Air pollution monitoring and tree and forest decline in East Asia: A review[J]. Science of the Total Environment, 2020, 742: 140288. doi: 10.1016/j.scitotenv.2020.140288
|
[36] |
SOMMARIVA R, CRILLEY L R, BALL S M, et al. Enhanced wintertime oxidation of VOCs via sustained radical sources in the urban atmosphere[J]. Environmental Pollution, 2021, 274: 116563. doi: 10.1016/j.envpol.2021.116563
|