[1] |
HUANG Y F, ZHANG F M, LIANG Z J, et al. Effect of hydrothermal flame generation methods on energy consumption and economic performance of supercritical water oxidation systems[J]. Energy, 2023, 266: 126452. doi: 10.1016/j.energy.2022.126452
|
[2] |
REDDY S N, NANDA S, OKOLIE J A, et al. Hydrothermal flames for subaquatic, terrestrial and extraterrestrial applications[J]. Journal of Hazardous Materials, 2022, 424: 127520. doi: 10.1016/j.jhazmat.2021.127520
|
[3] |
XU T T, WANG S Z, LI Y H, et al. Review of the destruction of organic radioactive wastes by supercritical water oxidation[J]. Science of the Total Environment, 2021, 799: 149396. doi: 10.1016/j.scitotenv.2021.149396
|
[4] |
GONG Y M, GUO Y, SHEEHAN J D, et al. Oxidative degradation of landfill leachate by catalysis of CeMnOx/TiO2 in supercritical water: Mechanism and kinetic study[J]. Chemical Engineering Journal, 2018, 331: 578-586. doi: 10.1016/j.cej.2017.08.122
|
[5] |
LI J N, WANG S Z, LI Y H, et al. Supercritical water oxidation of semi-coke wastewater: Effects of operating parameters, reaction mechanism and process enhancement[J]. The Science of the Total Environment, 2020, 710: 134396. doi: 10.1016/j.scitotenv.2019.134396
|
[6] |
QIAN L L, WANG S Z, REN M M, et al. Co-oxidation effects and mechanisms between sludge and alcohols (methanol, ethanol and isopropanol) in supercritical water[J]. Chemical Engineering Journal, 2019, 366: 223-234. doi: 10.1016/j.cej.2019.02.046
|
[7] |
YANG B W, SHEN Z M, CHENG Z W, et al. Total nitrogen removal, products and molecular characteristics of 14N-containing compounds in supercritical water oxidation[J]. Chemosphere, 2017, 188: 642-649. doi: 10.1016/j.chemosphere.2017.08.069
|
[8] |
王瀚, 徐东海, 王瑜, 等. 典型含氮有机化合物超临界水氧化脱氮过程[J]. 东北电力大学学报, 2021, 41(5): 1-8.
WANG H, XU D H, WANG Y, et al. Denitrogenation processes of typical N-containing organic compounds in supercritical water oxidation[J]. Journal of Northeast Electric Power University, 2021, 41(5): 1-8 (in Chinese).
|
[9] |
SEGOND N, MATSUMURA Y, YAMAMOTO K. Determination of ammonia oxidation rate in sub- and supercritical water[J]. Industrial & Engineering Chemistry Research, 2002, 41(24): 6020-6027.
|
[10] |
PLOEGER J M, GREEN W H, TESTER J W. Co-oxidation of ammonia and ethanol in supercritical water, part 2: Modeling demonstrates the importance of H[J]. International Journal of Chemical Kinetics, 2008, 40(10): 653-662. doi: 10.1002/kin.20345
|
[11] |
LI J N, WANG S Z, QIAN L L, et al. Supercritical water co-oxidation behavior in the different monohydric alcohol-ammonia reaction environment[J]. Chemosphere, 2022, 307(Pt 2): 135858.
|
[12] |
LI J N, WANG S Z, LI Y H, et al. Experimental research and commercial plant development for harmless disposal and energy utilization of petrochemical sludge by supercritical water oxidation[J]. Chemical Engineering Research and Design, 2020, 162: 258-272. doi: 10.1016/j.cherd.2020.08.006
|
[13] |
ZHANG J, LI P, REN M M, et al. Effect of auxiliary fuel on degradation of ammonia in supercritical water: Kinetics analysis[J]. Fuel, 2021, 292: 120322. doi: 10.1016/j.fuel.2021.120322
|
[14] |
AL-DURI B, ALSOQYIANI F, KINGS I. Supercritical water oxidation (SCWO) for the removal of N-containing heterocyclic hydrocarbon wastes. Part I: Process enhancement by addition of isopropyl alcohol[J]. The Journal of Supercritical Fluids, 2016, 116: 155-163. doi: 10.1016/j.supflu.2016.05.002
|
[15] |
AL-DURI B, ALSOQYANI F. Supercritical water oxidation (SCWO) for the removal of nitrogen containing heterocyclic waste hydrocarbons. Part II: System kinetics[J]. The Journal of Supercritical Fluids, 2017, 128: 412-418. doi: 10.1016/j.supflu.2017.05.010
|
[16] |
ZHANG J, LI P, LU J L, et al. Supercritical water oxidation of ammonia with methanol as the auxiliary fuel: Comparing with isopropanol[J]. Chemical Engineering Research and Design, 2019, 147: 160-170. doi: 10.1016/j.cherd.2019.05.010
|
[17] |
夏冬冬, 曹昉, 武琪, 等. 黄钾铁矾类Fenton法处理难降解有机物喹啉[J]. 工业水处理, 2019, 39(3): 46-50. doi: 10.11894/1005-829x.2019.39(3).046
XIA D D, CAO F, WU Q, et al. Treatment of refractory organic matter quinoline by jarosite Fenton-like method[J]. Industrial Water Treatment, 2019, 39(3): 46-50 (in Chinese). doi: 10.11894/1005-829x.2019.39(3).046
|
[18] |
AKIYA N, SAVAGE P E. Roles of water for chemical reactions in high-temperature water[J]. Chemical Reviews, 2002, 102(8): 2725-2750. doi: 10.1021/cr000668w
|
[19] |
SAVAGE P E, YU J L, STYLSKI N, et al. Kinetics and mechanism of methane oxidation in supercritical water[J]. The Journal of Supercritical Fluids, 1998, 12(2): 141-153. doi: 10.1016/S0896-8446(97)00046-6
|
[20] |
SHIMODA E, FUJII T, HAYASHI R, et al. Kinetic analysis of the mixture effect in supercritical water oxidation of ammonia/methanol[J]. The Journal of Supercritical Fluids, 2016, 116: 232-238. doi: 10.1016/j.supflu.2016.05.052
|
[21] |
OE T, SUZUGAKI H, NARUSE I, et al. Role of methanol in supercritical water oxidation of ammonia[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3566-3573.
|
[22] |
CABEZA P, QUEIROZ J P S, ARCA S, et al. Sludge destruction by means of a hydrothermal flame. Optimization of ammonia destruction conditions[J]. Chemical Engineering Journal, 2013, 232: 1-9. doi: 10.1016/j.cej.2013.07.040
|
[23] |
GONG Y M, GUO Y, WANG S Z, et al. Supercritical water oxidation of Quinazoline: Effects of conversion parameters and reaction mechanism[J]. Water Research, 2016, 100: 116-125. doi: 10.1016/j.watres.2016.05.001
|
[24] |
CHAO M. Supercritical water oxidation of wastewater-based drilling fluid with glycol addition[J]. Journal of Advanced Oxidation Technologies, 2014, 17(2): 385-388.
|
[25] |
PRASAD MYLAPILLI S V, REDDY S N. Supercritical water oxidation of recalcitrant acetaminophen with methanol, ethanol, n-propanol, isopropanol and glycerol as co-fuels[J]. Chemical Engineering Journal Advances, 2020, 3: 100028. doi: 10.1016/j.ceja.2020.100028
|
[26] |
ZHANG J, LI P, LU J L, et al. Supercritical hydrothermal combustion of nitrogen-containing compounds in a tubular reactor[J]. Fuel, 2020, 275: 117889. doi: 10.1016/j.fuel.2020.117889
|
[27] |
LIU S K, JIN H, WEI W W, et al. Gasification of indole in supercritical water: Nitrogen transformation mechanisms and kinetics[J]. International Journal of Hydrogen Energy, 2016, 41(36): 15985-15997. doi: 10.1016/j.ijhydene.2016.04.219
|
[28] |
GOPALAN S, SAVAGE P E. A reaction network model for phenol oxidation in supercritical water[J]. AIChE Journal, 1995, 41(8): 1864-1873. doi: 10.1002/aic.690410805
|
[29] |
LU Y J, JIN H, GUO L J, et al. Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6066-6075. doi: 10.1016/j.ijhydene.2008.07.082
|
[30] |
GOPALAN S, SAVAGE P E. Reaction mechanism for phenol oxidation in supercritical water[J]. The Journal of Physical Chemistry, 1994, 98(48): 12646-12652. doi: 10.1021/j100099a031
|