[1] BIGHAM J M, CARLSON L, MURAD E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities[J]. Mineralogical Magazine, 1994, 58(393): 641-648. doi: 10.1180/minmag.1994.058.393.14
[2] BIGHAM J M, SCHWERTMANN U, PFAB G. Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage[J]. Applied Geochemistry, 1996, 11(6): 845-849. doi: 10.1016/S0883-2927(96)00052-2
[3] PAIKARAY S, PEIFFER S. Abiotic schwertmannite transformation kinetics and the role of sorbed As(Ⅲ)[J]. Applied Geochemistry, 2012, 27(3): 590-597. doi: 10.1016/j.apgeochem.2011.12.013
[4] 谢莹莹. 溶解性有机质介导下酸性矿山废水中施氏矿物的转化机制及对重金属环境行为的影响[D]. 广州: 华南理工大学, 2018. XIE Y Y. Phase transformation of schwertmannite mediated by dissolved organic matter in acid mine drainage and its effects on environmental behaviour of heavy metals[D]. Guangzhou: South China University of Technology, 2018 (in Chinese).
[5] SONG J, JIA S Y, REN H T, et al. Application of a high-surface-area schwertmannite in the removal of arsenate and arsenite[J]. International Journal of Environmental Science and Technology, 2015, 12(5): 1559-1568. doi: 10.1007/s13762-014-0528-9
[6] FAN L J, ZHANG X J. Adsorption and desorption of cadmium on synthetic schwertmannite[J]. Desalination and Water Treatment, 2017, 79: 243-250. doi: 10.5004/dwt.2017.20339
[7] PAIKARAY S, PEIFFER S. Biotic and abiotic schwertmannites as scavengers for As(III): Mechanisms and effects[J]. Water, Air, & Soil Pollution, 2012, 223(6): 2933-2942.
[8] 罗灿钰, 张琢, 赵华甫. 施氏矿物的矿物学特征及其除砷研究进展[J]. 环境化学, 2021, 40(11): 3530-3543. doi: 10.7524/j.issn.0254-6108.2020070302 LUO C Y, ZHANG Z, ZHAO H F. The mineralogical characteristics of schwertmannite and its progress in arsenic removal[J]. Environmental Chemistry, 2021, 40(11): 3530-3543 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070302
[9] LIU F W, ZHOU J, ZHANG S S, et al. Schwertmannite synthesis through ferrous ion chemical oxidation under different H2O2 supply rates and its removal efficiency for arsenic from contaminated groundwater[J]. PLoS One, 2015, 10(9): e0138891. doi: 10.1371/journal.pone.0138891
[10] HAN X, LI Y L, GU J D. Oxidation of As(III) by MnO2 in the absence and presence of Fe(II) under acidic conditions[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 368-379. doi: 10.1016/j.gca.2010.10.010
[11] GAN M, SUN S J, ZHENG Z H, et al. Adsorption of Cr(Ⅵ) and Cu(Ⅱ) by AlPO4 modified biosynthetic schwertmannite[J]. Applied Surface Science, 2015, 356: 986-997. doi: 10.1016/j.apsusc.2015.08.200
[12] SUN S J, ZHU J Y, ZHENG Z H, et al. Biosynthesis of β-cyclodextrin modified Schwertmannite and the application in heavy metals adsorption[J]. Powder Technology, 2019, 342: 181-192. doi: 10.1016/j.powtec.2018.09.072
[13] LI J Y, ZHENG B H, HE Y Z, et al. Antimony contamination, consequences and removal techniques: A review[J]. Ecotoxicology and Environmental Safety, 2018, 156: 125-134. doi: 10.1016/j.ecoenv.2018.03.024
[14] ETTLER V, TEJNECKÝ V, MIHALJEVIČ M, et al. Antimony mobility in lead smelter-polluted soils[J]. Geoderma, 2010, 155(3/4): 409-418.
[15] FU Z Y, WU F C, MO C L, et al. Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China[J]. Microchemical Journal, 2011, 97(1): 12-19. doi: 10.1016/j.microc.2010.06.004
[16] HE M C, WANG X Q, WU F C, et al. Antimony pollution in China[J]. Science of the Total Environment, 2012, 421/422: 41-50. doi: 10.1016/j.scitotenv.2011.06.009
[17] ZHENG J, OHATA M, FURUTA N. Studies on the speciation of inorganic and organic antimony compounds in airborne particulate matter by HPLC-ICP-MS[J]. Analyst, 2000, 125(6): 1025-1028. doi: 10.1039/b002201m
[18] 张晓健. 甘肃陇星锑污染事件和四川广元应急供水[J]. 给水排水, 2016, 52(10): 9-20. doi: 10.3969/j.issn.1002-8471.2016.10.002 ZHANG X J. Antimony pollution accident of Gansu Longxing enterprise and emergent water supply in Guangyuan City[J]. Water & Wastewater Engineering, 2016, 52(10): 9-20 (in Chinese). doi: 10.3969/j.issn.1002-8471.2016.10.002
[19] 朱静, 吴丰昌, 邓秋静, 等. 湖南锡矿山周边水体的环境特征[J]. 环境科学学报, 2009, 29(3): 655-661. doi: 10.3321/j.issn:0253-2468.2009.03.029 ZHU J, WU F C, DENG Q J, et al. Environmental characteristics of water near the Xikuangshan antimony mine, Hunan Province[J]. Acta Scientiae Circumstantiae, 2009, 29(3): 655-661 (in Chinese). doi: 10.3321/j.issn:0253-2468.2009.03.029
[20] WANG L L, LI H, YU D Y, et al. Hyperbranched polyamide-functionalized sodium alginate microsphere as a novel adsorbent for the removal of antimony(Ⅲ) in wastewater[J]. Environmental Science and Pollution Research, 2019, 26(26): 27372-27384. doi: 10.1007/s11356-019-05914-4
[21] ZHANG D J, WU S Y, WEI Y D, et al. Schwertmannite modified with ethanol: A simple and feasible method for improving As(III) adsorption capacity[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107412. doi: 10.1016/j.jece.2022.107412
[22] CAO Q W, CHEN C, LI K, et al. Arsenic(V) removal behavior of schwertmannite synthesized by KMnO4 rapid oxidation with high adsorption capacity and Fe utilization[J]. Chemosphere, 2021, 264: 128398. doi: 10.1016/j.chemosphere.2020.128398
[23] LI X, ZHANG Y K, XIE Y, et al. Ultrasonic-enhanced Fenton-like degradation of bisphenol A using a bio-synthesized schwertmannite catalyst[J]. Journal of Hazardous Materials, 2018, 344: 689-697. doi: 10.1016/j.jhazmat.2017.11.019
[24] BOILY J F, GASSMAN P L, PERETYAZHKO T, et al. FTIR spectral components of schwertmannite[J]. Environmental Science & Technology, 2010, 44(4): 1185-1190.
[25] BOWLES J F W. Cornell R. M. and Schwertmann U. The Iron Oxides: Structure, Properties Reactions Occurrence and Uses. [J]. Mineralogical Magazine, 1997, 61(408): 740-741. doi: 10.1180/minmag.1997.061.408.20
[26] JUANG R S, WU F C, TSENG R L. Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels[J]. Journal of Colloid and Interface Science, 2000, 227(2): 437-444. doi: 10.1006/jcis.2000.6912
[27] HO Y S, McKAY G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash[J]. Journal of Environmental Science and Health, Part A, 1999, 34(5): 1179-1204. doi: 10.1080/10934529909376889
[28] 李双双, 戴友芝, 于磊, 等. 铁改性海泡石除锑的影响因素研究[J]. 环境工程学报, 2009, 3(3): 485-488. LI S S, DAI Y Z, YU L, et al. Study on affecting factors of removing antimony with iron modified sepiolite[J]. Chinese Journal of Environmental Engineering, 2009, 3(3): 485-488 (in Chinese).
[29] LAN B Y, WANG Y X, WANG X, et al. Aqueous arsenic (As) and antimony (Sb) removal by potassium ferrate[J]. Chemical Engineering Journal, 2016, 292: 389-397. doi: 10.1016/j.cej.2016.02.019
[30] 丁秘, 康文晶, 冯程龙, 等. 人工合成水铁矿对水中六价铬的吸附特征研究[J]. 工业水处理, 2017, 37(2): 29-33. doi: 10.11894/1005-829x.2017.37(2).029 DING M, KANG W J, FENG C L, et al. Research on the adsorption characteristics of synthetic ferrihydrite for hexavalent chromiumon in water[J]. Industrial Water Treatment, 2017, 37(2): 29-33 (in Chinese). doi: 10.11894/1005-829x.2017.37(2).029
[31] SCHWERTMANN U, TAYLOR R M. Iron oxides[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, 2018: 379-438.
[32] 范聪. 施氏矿物还原-重结晶过程中重金属的再分配机制研究[D]. 广州: 华南理工大学, 2019. FAN C. Redistribution mechanism of previously-bound heavy metals during the Fe(Ⅱ)-induced recrystallization of schwertmannite[D]. Guangzhou: South China University of Technology, 2019 (in Chinese).
[33] 申思月, 黄阳, 王维清, 等. 水铁矿及其腐殖酸复合体对Sb(Ⅴ)的吸附行为研究[J]. 环境科学学报, 2019, 39(12): 4015-4021. SHEN S Y, HUANG Y, WANG W Q, et al. Study on adsorption behavior of Sb(Ⅴ) by ferrihydrite and its humic acid complex[J]. Acta Scientiae Circumstantiae, 2019, 39(12): 4015-4021 (in Chinese).
[34] FAN C, GUO C L, ZHANG J H, et al. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms[J]. Journal of Environmental Sciences, 2019, 80: 218-228. doi: 10.1016/j.jes.2018.12.015
[35] SU X Y, LI X F, MA L M, et al. Formation and transformation of schwertmannite in the classic Fenton process[J]. Journal of Environmental Sciences (China), 2019, 82: 145-154. doi: 10.1016/j.jes.2019.03.004
[36] CHENG K, WU Y N, ZHANG B R, et al. New insights into the removal of antimony from water using an iron-based metal-organic framework: Adsorption behaviors and mechanisms[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 602: 125054. doi: 10.1016/j.colsurfa.2020.125054
[37] WU T L, SUN Q, FANG G D, et al. Unraveling the effects of Gallic acid on Sb(Ⅲ) adsorption and oxidation on goethite[J]. Chemical Engineering Journal, 2019, 369: 414-421. doi: 10.1016/j.cej.2019.03.085
[38] LI W B, FU F L. Incorporating MnFe2O4 onto the thiol-functionalized MCM-41 for effective capturing of Sb(III) in aqueous media[J]. Microporous and Mesoporous Materials, 2020, 298: 110060. doi: 10.1016/j.micromeso.2020.110060
[39] 张传巧. 新型镧锰复合氧化物制备及其去除水中锑的研究[D]. 西安: 西安建筑科技大学, 2020. ZHANG C Q. Preparation of A novel lanthanum-manganese binary oxide and its behavior and mechanism for the removal of antimony from aqueous solution[D]. Xi'an: Xi'an University of Architecture and Technology, 2020 (in Chinese).