[1] LI Y Y, CAO P, WANG S, et al. Research on the treatment mechanism of anthraquinone dye wastewater by algal-bacterial symbiotic system[J]. Bioresource Technology, 2022, 347: 126691. doi: 10.1016/j.biortech.2022.126691
[2] LIU Z C, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon[J]. Bioresource Technology, 2022, 354: 127168. doi: 10.1016/j.biortech.2022.127168
[3] PENSUPA N, LEU S Y, HU Y Z, et al. Recent trends in sustainable textile waste recycling methods: Current situation and future prospects[J]. Topics in Current Chemistry, 2017, 375(5): 76. doi: 10.1007/s41061-017-0165-0
[4] RAWAT D, SHARMA R S, KARMAKAR S, et al. Ecotoxic potential of a presumably non-toxic azo dye[J]. Ecotoxicology and Environmental Safety, 2018, 148: 528-537. doi: 10.1016/j.ecoenv.2017.10.049
[5] 李春庚, 甄新, 李亚丽, 等. 印染废水染料降解技术研究进展[J]. 应用化工, 2022, 51(5): 1439-1444. doi: 10.3969/j.issn.1671-3206.2022.05.043 LI C G, ZHEN X, LI Y L, et al. Advances in dye degradation technology of printing and dyeing wastewater[J]. Applied Chemical Industry, 2022, 51(5): 1439-1444 (in Chinese). doi: 10.3969/j.issn.1671-3206.2022.05.043
[6] 宗刚, 高存. 金属氧化物光催化剂降解偶氮染料废水的研究进展[J]. 应用化工, 2023, 52(3): 874-879. doi: 10.3969/j.issn.1671-3206.2023.03.044 ZONG G, GAO C. Research progress on degradation of azo dye wastewater by metal oxide photocatalyst[J]. Applied Chemical Industry, 2023, 52(3): 874-879 (in Chinese). doi: 10.3969/j.issn.1671-3206.2023.03.044
[7] ZAFAR S, BUKHARI D A, REHMAN A. Azo dyes degradation by microorganisms - An efficient and sustainable approach[J]. Saudi Journal of Biological Sciences, 2022, 29(12): 103437. doi: 10.1016/j.sjbs.2022.103437
[8] YAMJALA K, NAINAR M S, RAMISETTI N R. Methods for the analysis of azo dyes employed in food industry - A review[J]. Food Chemistry, 2016, 192: 813-824. doi: 10.1016/j.foodchem.2015.07.085
[9] SEN S K, RAUT S, BANDYOPADHYAY P, et al. Fungal decolouration and degradation of azo dyes: A review[J]. Fungal Biology Reviews, 2016, 30(3): 112-133. doi: 10.1016/j.fbr.2016.06.003
[10] LIU L M, CHEN Z, ZHANG J W, et al. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review[J]. Journal of Water Process Engineering, 2021, 42: 102122. doi: 10.1016/j.jwpe.2021.102122
[11] LIU Z, DING H J, ZHAO C, et al. Electrochemical activation of peroxymonosulfate with ACF cathode: Kinetics, influencing factors, mechanism, and application potential[J]. Water Research, 2019, 159: 111-121. doi: 10.1016/j.watres.2019.04.052
[12] ZHU Y H, ZHAO C, LIANG J L, et al. Rapid removal of diclofenac in aqueous solution by soluble Mn(III) (aq) generated in a novel Electro-activated carbon fiber-permanganate (E-ACF-PM) process[J]. Water Research, 2019, 165: 114975. doi: 10.1016/j.watres.2019.114975
[13] ZHU Y, DING H J, FAN J H, et al. Nonradical activation of peroxydisulfate with in situ generated amorphous MnO2 in an electro-permanganate process: Involvement of singlet oxygen, electron transfer, and Mn(Ⅲ)aq[J]. ACS ES& T Engineering, 2022, 2(7): 1316-1325.
[14] ZHU Y H, WANG X X, ZHANG J, et al. Generation of active Mn(Ⅲ)aq by a novel heterogeneous electro-permanganate process with manganese(II) as promoter and stabilizer[J]. Environmental Science & Technology, 2019, 53(15): 9063-9072.
[15] 吴永杭, 胡方明, 张珊, 等. 商用TiO2催化臭氧降解活性黄3RE的研究[J]. 广东化工, 2022, 49(15): 125-127. doi: 10.3969/j.issn.1007-1865.2022.15.043 WU Y H, HU F M, ZHANG S, et al. Catalytic ozonation of aqueous reactive yellow 3RE with commercial TiO2[J]. Guangdong Chemical Industry, 2022, 49(15): 125-127 (in Chinese). doi: 10.3969/j.issn.1007-1865.2022.15.043
[16] 唐孟姣, 薛秀玲, 赖小丽. Al~0-O2体系降解活性黄3RS溶液[J]. 环境化学, 2015, 34(7): 1350-1355. doi: 10.7524/j.issn.0254-6108.2015.07.2014122303 TANG M J, XUE X L, LAI X L. Degradation of reactive yellow 3RS by the Al0-O2 system[J]. Environmental Chemistry, 2015, 34(7): 1350-1355 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.07.2014122303
[17] 朱驯, 项东升, 刘德驹, 等. 内电解-超声波耦合处理活性黄3RX染料废水的研究[J]. 工业水处理, 2010, 30(3): 25-27,71. doi: 10.3969/j.issn.1005-829X.2010.03.008 ZHU X, XIANG D S, LIU D J, et al. Experimental study on the treatment of active yellow 3RX wastewater by internal electrolysis and ultrasonic irradiation[J]. Industrial Water Treatment, 2010, 30(3): 25-27,71 (in Chinese). doi: 10.3969/j.issn.1005-829X.2010.03.008
[18] PAPIĆ S, VUJEVIĆ D, KOPRIVANAC N, et al. Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1137-1145.
[19] PANIZZA M, CERISOLA G. Removal of organic pollutants from industrial wastewater by electrogenerated Fenton’s reagent[J]. Water Research, 2001, 35(16): 3987-3992. doi: 10.1016/S0043-1354(01)00135-X
[20] 张静, 张宏龙, 王定祥, 等. 强化高锰酸钾氧化体系中自由基的产生与利用研究进展[J]. 环境化学, 2021, 40(2): 487-496. doi: 10.7524/j.issn.0254-6108.2020062603 ZHANG J, ZHANG H L, WANG D X, et al. Generation and utilization of radicals during enhanced permanganate oxidation: A review[J]. Environmental Chemistry, 2021, 40(2): 487-496 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020062603
[21] WANG L H, JIANG J, PANG S Y, et al. Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants[J]. Chemosphere, 2019, 228: 602-610. doi: 10.1016/j.chemosphere.2019.04.149
[22] KHAN A, ZHANG K K, SUN P, et al. High performance of the A-Mn2O3 nanocatalyst for persulfate activation: Degradation process of organic contaminants via singlet oxygen[J]. Journal of Colloid and Interface Science, 2021, 584: 885-899. doi: 10.1016/j.jcis.2020.10.021
[23] LIANG C J, WANG Z S, MOHANTY N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃[J]. Science of the Total Environment, 2006, 370(2/3): 271-277.
[24] 吕亭亭. NTA-Fe(Ⅲ)活化过一硫酸钾降解阿特拉津的效能研究[D]. 沈阳: 沈阳建筑大学, 2018. LÜ/LV/LU/LYU) T T. Study on the degradation efficiency of atrazine by NTA-Fe(Ⅲ) activated potassium persulfate[D]. Shenyang: Shenyang Jianzhu University, 2018 (in Chinese).
[25] SONG H R, YAN L X, MA J, et al. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors[J]. Water Research, 2017, 116: 182-193. doi: 10.1016/j.watres.2017.03.035
[26] CHU W, WANG Y R, LEUNG H F. Synergy of sulfate and hydroxyl radicals in UV/S2O82−/H2O2 oxidation of iodinated X-ray contrast medium iopromide[J]. Chemical Engineering Journal, 2011, 178: 154-160. doi: 10.1016/j.cej.2011.10.033
[27] BUXTON G, GREENSTOCK C, HELMAN W, et al. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O− in Aqueous Solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17: 513-886. doi: 10.1063/1.555805
[28] YANG Y, BANERJEE G, BRUDVIG G W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology, 2018, 52(10): 5911-5919.
[29] PADMAJA S, ALFASSI Z B, NETA P, et al. Rate constants for reactions of SO42-radicals in acetonitrile[J]. International Journal of Chemical Kinetics, 1993, 25(3): 193-198. doi: 10.1002/kin.550250307
[30] MOHAMMAD M, KHAN A Y, SUBHANI M S, et al. Kinetics and electrochemical studies on superoxide[J]. Research on Chemical Intermediates, 2001, 27(3): 259-267. doi: 10.1163/156856701300356473
[31] YANG Y, JIANG J, LU X L, et al. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process[J]. Environmental Science & Technology, 2015, 49(12): 7330-7339.
[32] ZHOU Y, JIANG J, GAO Y A, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950.
[33] 陈军超. TEMPO捕获过氧自由基的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. CHEN J C. Study on the mechanism of TEMPO capturing peroxy free radicals[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
[34] ZHANG H, WANG Z, LIU C, et al. Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250: 76-82. doi: 10.1016/j.cej.2014.03.114
[35] WANG Y R, CHU W. Degradation of 2, 4, 5-trichlorophenoxyacetic acid by a novel Electro-Fe(Ⅱ)/Oxone process using iron sheet as the sacrificial anode[J]. Water Research, 2011, 45(13): 3883-3889. doi: 10.1016/j.watres.2011.04.034
[36] WANG S Z, WANG J L. Degradation of carbamazepine by radiation-induced activation of peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 336: 595-601. doi: 10.1016/j.cej.2017.12.068
[37] 刘臻. 活性炭纤维阴极电活化过硫酸盐去除水中难降解有机污染物研究[D]. 重庆: 重庆大学, 2019. LIU Z. Study on removal of refractory organic pollutants from water by activated carbon fiber cathode electro-activated persulfate[D]. Chongqing: Chongqing University, 2019 (in Chinese).
[38] ZHU S S, LI X J, KANG J A, et al. Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology, 2019, 53(1): 307-315.
[39] CHENG X, GUO H G, ZHANG Y L, et al. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J]. Water Research, 2017, 113: 80-88. doi: 10.1016/j.watres.2017.02.016
[40] 阳海, 胡倩, 聂信, 等. UVC/过硫酸盐/乙腈反应体系的构建及对茜素类染料的降解[J]. 环境化学, 2023, 42(1): 327-336. doi: 10.7524/j.issn.0254-6108.2021090902 YANG H, HU Q, NIE X, et al. Construction of UVC/persulfate/acetonitrile reaction system and its degradation of alizarin dyes[J]. Environmental Chemistry, 2023, 42(1): 327-336 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021090902
[41] 廖冬梅, 王正江. TMT药剂含量测定[J]. 热力发电, 2019, 48(1): 115-120. LIAO D M, WANG Z J. Detection of TMT concentration[J]. Thermal Power Generation, 2019, 48(1): 115-120 (in Chinese).
[42] 廉雨, 赖波, 周岳溪, 等. 电芬顿氧化法处理酸性橙Ⅱ模拟废水[J]. 环境科学研究, 2012, 25(3): 328-332. LIAN Y, LAI B, ZHOU Y X, et al. Treatment of acid orange Ⅱ simulated wastewater by electro-Fenton oxidation[J]. Research of Environmental Sciences, 2012, 25(3): 328-332 (in Chinese).