[1] 葛文书. 钙铝层状双氢氧化物/粉煤灰复合物用于磷吸附[D]. 大连: 大连理工大学, 2022. GE W S. Phosphorus removal by composite of calcium-aluminum layered double hydroxides and fly ash[D]. Dalian: Dalian University of Technology, 2022 (in Chinese).
[2] 郝强州. 复合金属氧化物掺杂沸石对水中氨氮和磷酸根的吸附特性研究[D]. 杨凌: 西北农林科技大学, 2022. HAO Q Z. Study on the adsorption characteristics of ammonia nitrogen and phosphate in water by zeolite doped with composite metal oxides[D]. Yangling: Northwest A & F University, 2022 (in Chinese).
[3] 张小宇, 张世熔, 王新月, 等. 镧改性农业废弃秸秆对养殖废水中磷的去除[J]. 环境化学, 2021, 40(4): 1274-1284. doi: 10.7524/j.issn.0254-6108.2020072802 ZHANG X Y, ZHANG S R, WANG X Y, et al. Removal of phosphorus from wastewater by lanthanum modified straws[J]. Environmental Chemistry, 2021, 40(4): 1274-1284 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020072802
[4] 刘欣. 中国磷循环格局演变及其资源与环境效应[D]. 南京: 南京大学, 2017. LIU X. Dynamics of phosphorus cycling in China and the impacts on resources and the environment[D]. Nanjing: Nanjing University, 2017 (in Chinese).
[5] SCHOLZ R W, ULRICH A E, EILITTÄ M, et al. Sustainable use of phosphorus: A finite resource[J]. Science of the Total Environment, 2013, 461/462: 799-803. doi: 10.1016/j.scitotenv.2013.05.043
[6] 冯鑫, 周剑, 潘杨. 蓝铁矿法回收生物膜富集的城市污水中的磷[J]. 环境化学, 2022, 41(5): 1787-1795. doi: 10.7524/j.issn.0254-6108.2021011004 FENG X, ZHOU J, PAN Y. Vivianite crystallization method to recover phosphorus in municipal sewage enriched by biofilm method[J]. Environmental Chemistry, 2022, 41(5): 1787-1795 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021011004
[7] LACSON C F Z, LU M C, HUANG Y H. Calcium-based seeded precipitation for simultaneous removal of fluoride and phosphate: Its optimization using BBD-RSM and defluoridation mechanism[J]. Journal of Water Process Engineering, 2022, 47: 102658. doi: 10.1016/j.jwpe.2022.102658
[8] 康为清, 时历杰, 赵有璟, 等. 水处理中膜分离技术的应用[J]. 无机盐工业, 2014, 46(5): 6-9. KANG W Q, SHI L J, ZHAO Y J, et al. Application of membrane separation technique in water treatment[J]. Inorganic Chemicals Industry, 2014, 46(5): 6-9 (in Chinese).
[9] SUN S F, GAO M C, WANG Y, et al. Phosphate removal via biological process coupling with hydroxyapatite crystallization in alternating anaerobic/aerobic biofilter reactor[J]. Bioresource Technology, 2021, 326: 124728. doi: 10.1016/j.biortech.2021.124728
[10] DONG H, WEI L Z, TARPEH W A. Electro-assisted regeneration of pH-sensitive ion exchangers for sustainable phosphate removal and recovery[J]. Water Research, 2020, 184: 116167. doi: 10.1016/j.watres.2020.116167
[11] 韩飞超. 聚苯乙烯球体基水合氧化锰复合材料的研制及其强化除磷性能[D]. 南京: 南京大学, 2014. HAN F C. Preparation of polystyrene anion exchanger-based Hydrous manganese oxide nanocomposite for preferable phosphate removal from water[D]. Nanjing: Nanjing University, 2014 (in Chinese).
[12] LIU Y Q, CHEN Z H, YIN X S, et al. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide[J]. Journal of Molecular Structure, 2023, 1273: 134361. doi: 10.1016/j.molstruc.2022.134361
[13] CHEN L, LI Y Z, SUN Y B, et al. La(OH)3 loaded magnetic mesoporous nanospheres with highly efficient phosphate removal properties and superior pH stability[J]. Chemical Engineering Journal, 2019, 360: 342-348. doi: 10.1016/j.cej.2018.11.234
[14] BRAUN J C A, BORBA C E, GODINHO M, et al. Phosphorus adsorption in Fe-loaded activated carbon: Two-site monolayer equilibrium model and phenomenological kinetic description[J]. Chemical Engineering Journal, 2019, 361: 751-763. doi: 10.1016/j.cej.2018.12.073
[15] 吴语潇, 杨甜, 徐武松, 等. 极性可调功能化纤维的构建及其对废水磷酸盐的去除[J]. 环境化学, 2021, 40(12): 3898-3908. doi: 10.7524/j.issn.0254-6108.2021051007 WU Y X, YANG T, XU W S, et al. The construction of polarity regulable functionalized fibers and its removal of phosphate in wastewater[J]. Environmental Chemistry, 2021, 40(12): 3898-3908 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021051007
[16] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10): 4210-4226. CUI W Y, AI H Y, ZHANG S H , et al. Research status on application of modified adsorbents in phosphorus removal from wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4210-4226 (in Chinese).
[17] XU G, CAO J, ZHAO Y. et al. Phosphorylated Polyacrylonitrile Fibers as an Efficient and Greener Acetalization Catalystr[J]. Chemistry –An Asian Journal, 2017, 12(19): 2565-2575. doi: 10.1002/asia.201700846
[18] NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers—a state-of-the-art review[J]. Progress in Polymer Science, 2012, 37(3): 487-513. doi: 10.1016/j.progpolymsci.2011.07.001
[19] XU W S, ZHENG W J, WANG F J, et al. Using iron ion-loaded aminated polyacrylonitrile fiber to efficiently remove wastewater phosphate[J]. Chemical Engineering Journal, 2021, 403: 126349. doi: 10.1016/j.cej.2020.126349
[20] ZHENG W, WU Q, XU W. et al. Efficient capture of phosphate from wastewater by a recyclable Environmental Science-Water Research & Technology, 2022, 8(3): 607-618.
[21] 丁天琦. 基于静电纺丝制备聚丙烯腈基多孔纤维膜及其吸附性能研究[D]. 合肥: 安徽建筑大学, 2023. DING T Q. Preparation and adsorption properties of polyacrylonitrile based porous fiber membranes based on electrospinning technique[D]. Hefei: Anhui Jianzhu University, 2023 (in Chinese).
[22] MEEDS J A, MARTY KRANABETTER J, ZIGG I, et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas[J]. The ISME Journal, 2021, 15: 1478-1489. doi: 10.1038/s41396-020-00864-z
[23] KUANG Y Z, HE H, CHEN S X, et al. Adsorption behavior of CO2 on amine-functionalized polyacrylonitrile fiber[J]. Adsorption, 2019, 25(4): 693-701. doi: 10.1007/s10450-019-00070-0
[24] DANON A, STAIR P C, WEITZ E. FTIR study of CO2 adsorption on amine-grafted SBA-15: Elucidation of adsorbed species[J]. The Journal of Physical Chemistry C, 2011, 115(23): 11540-11549. doi: 10.1021/jp200914v
[25] LIU R T, CHI L N, WANG X Z, et al. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs[J]. Chemical Engineering Journal, 2019, 357: 159-168. doi: 10.1016/j.cej.2018.09.122
[26] ZHOU S L, HE H, WANG L, et al. The structural design of polyacrylonitrile fibre-based colorimetric sensors and their synergistic interaction mechanism for Cu2+ detection[J]. Journal of Materials Science, 2020, 55(35): 16806-16821. doi: 10.1007/s10853-020-05217-x
[27] ZHOU Z J, XU Q L, WU Z J, et al. Preparation and characterization of clay-oyster shell composite adsorption material and its application in phosphorus removal from wastewater[J]. Sustainable Chemistry and Pharmacy, 2023, 32: 101023. doi: 10.1016/j.scp.2023.101023
[28] NAYEEM A, MIZI F, ALI M F, et al. Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater[J]. Environmental Research, 2023, 216: 114514. doi: 10.1016/j.envres.2022.114514
[29] JIANG W, JIANG Y S, LI P Y, et al. Reuse of phosphogypsum and phosphorus ore flotation tailings as adsorbent: The adsorption performance and mechanism of phosphate[J]. Journal of Physics and Chemistry of Solids, 2023, 178: 111313. doi: 10.1016/j.jpcs.2023.111313
[30] ATNAFU T, LETA S. Plasticized magnetic starch-based Fe3O4 clay polymer nanocomposites for phosphate adsorption from aqueous solution[J]. Heliyon, 2021, 7(9): e07973. doi: 10.1016/j.heliyon.2021.e07973
[31] 丁程程, 潘纲, 张美一. 淀粉改性纳米四氧化三铁的制备及其除磷效能的研究[J]. 环境工程学报, 2011, 5(10): 2167-2172. DING C C, PAN G, ZHANG M Y. Study on preparation of starch-coated Fe3O4 and its phosphate removal properties[J]. Chinese Journal of Environmental Engineering, 2011, 5(10): 2167-2172 (in Chinese).
[32] VU M T, NGUYEN L N, ABU HASAN JOHIR M, et al. Phosphorus removal from aqueous solution by steel making slag–Mechanisms and performance optimisation[J]. Journal of Cleaner Production, 2021, 284: 124753. doi: 10.1016/j.jclepro.2020.124753
[33] MEHRABI N, SOLEIMANI M, SHARIFIFARD H, et al. Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM)[J]. Desalination and Water Treatment, 2016, 57(33): 15613-15618. doi: 10.1080/19443994.2015.1070763
[34] WANG Z F, SHI M, LI J H, et al. Influence of moderate pre-oxidation treatment on the physical, chemical and phosphate adsorption properties of iron-containing activated carbon[J]. Journal of Environmental Sciences, 2014, 26(3): 519-528. doi: 10.1016/S1001-0742(13)60440-4