[1] |
BEAUDOIN E, DAVIDSON P, ABECASSIS B, et al. Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix[J]. Nanoscale, 2017, 9(44): 17371-17377. doi: 10.1039/C7NR05723G
|
[2] |
SALAITA K, WANG Y H, MIRKIN C A. Applications of dip-pen nanolithography[J]. Nature Nanotechnology, 2007, 2(3): 145-155. doi: 10.1038/nnano.2007.39
|
[3] |
包信和. 纳米限域及能源分子的催化转化[J]. 科学通报, 2018, 63(14): 1266-1274,1265.
BAO X H. Nano confinement and catalytic conversion of energy molecules[J]. Chinese Science Bulletin, 2018, 63(14): 1266-1274,1265 (in Chinese).
|
[4] |
CHEN M J, CHU W. Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis[J]. Journal of Hazardous Materials, 2012, 219/220: 183-189. doi: 10.1016/j.jhazmat.2012.03.074
|
[5] |
ZHOU T, ZOU X L, WU X H, et al. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe0/tetraphosphate Fenton-like system[J]. Ultrasonics Sonochemistry, 2017, 37: 320-327. doi: 10.1016/j.ultsonch.2017.01.015
|
[6] |
HUO Z Y, DU Y, CHEN Z, et al. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review[J]. Water Research, 2020, 173: 115581. doi: 10.1016/j.watres.2020.115581
|
[7] |
RENGGLI K, BAUMANN P, LANGOWSKA K, et al. Selective and responsive nanoreactors[J]. Advanced Functional Materials, 2011, 21(7): 1241-1259. doi: 10.1002/adfm.201001563
|
[8] |
KHLOBYSTOV A N. Carbon nanotubes: From nano test tube to nano-reactor[J]. ACS Nano, 2011, 5(12): 9306-9312. doi: 10.1021/nn204596p
|
[9] |
GOH H, LEE H J, NAM B, et al. A chemical reactor for hierarchical nanomaterials with tunable structures: A metal-triggered reaction in the confined heat chamber[J]. Chemistry of Materials, 2011, 23(21): 4832-4837. doi: 10.1021/cm202252a
|
[10] |
MANDAL S S, BHADURI S, AMENITSCH H, et al. Synchrotron small-angle X-ray scattering studies of hemoglobin nonaggregation confined inside polymer capsules[J]. The Journal of Physical Chemistry B, 2012, 116(32): 9604-9610. doi: 10.1021/jp303596q
|
[11] |
KLU P K, ZHANG H, NASIR KHAN M A, et al. TiO2/C coated Co3O4 nanocages for peroxymonosulfate activation towards efficient degradation of organic pollutants[J]. Chemosphere, 2022, 308: 136255. doi: 10.1016/j.chemosphere.2022.136255
|
[12] |
SUN J, LIU H M, CHEN X, et al. An oil droplet template method for the synthesis of hierarchical structured Co3O4/C anodes for Li-ion batteries[J]. Nanoscale, 2013, 5(16): 7564-7571. doi: 10.1039/c3nr02385k
|
[13] |
XIAO J P, PAN X L, GUO S J, et al. Toward fundamentals of confined catalysis in carbon nanotubes[J]. Journal of the American Chemical Society, 2015, 137(1): 477-482. doi: 10.1021/ja511498s
|
[14] |
YAO Q L, LU Z H, YANG K K, et al. Ruthenium nanoparticles confined in SBA-15 as highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane and hydrazine borane[J]. Scientific Reports, 2015, 5: 15186. doi: 10.1038/srep15186
|
[15] |
李赛赛, 孙见蕊, 管景奇. 提升二维材料的电催化析氢和光催化析氢性能的策略[J]. 催化学报, 2021, 42(4): 511-556. doi: 10.1016/S1872-2067(20)63693-2
LI S S, SUN J R, GUAN J Q. Strategies to improve the electrocatalytic and photocatalytic hydrogen evolution performance of two-dimensional materials[J]. Chinese Journal of Catalysis, 2021, 42(4): 511-556 (in Chinese). doi: 10.1016/S1872-2067(20)63693-2
|
[16] |
CHANG K, CHEN W X. Single-layer MoS2/graphene dispersed in amorphous carbon: Towards high electrochemical performances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(43): 17175-17184. doi: 10.1039/c1jm12942b
|
[17] |
JIANG H, REN D Y, WANG H F, et al. 2D monolayer MoS2–carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage[J]. Advanced Materials, 2015, 27(24): 3687-3695. doi: 10.1002/adma.201501059
|
[18] |
ZHAO H W, ZHU Y J, LI F S, et al. A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets[J]. Angewandte Chemie International Edition, 2017, 56(30): 8766-8770. doi: 10.1002/anie.201703871
|
[19] |
SUN J, LIU H M, CHEN X, et al. Synthesis of graphenenanosheets with good control over the number of layers within the two-dimensional galleries of layered double hydroxides[J]. Chemical Communications, 2012, 48(65): 8126-8128. doi: 10.1039/c2cc33782g
|
[20] |
VICIANO-CHUMILLAS M, MON M, FERRANDO-SORIA J, et al. Metal-organic frameworks as chemical nanoreactors: Synthesis and stabilization of catalytically active metal species in confined spaces[J]. Accounts of Chemical Research, 2020, 53(2): 520-531. doi: 10.1021/acs.accounts.9b00609
|
[21] |
XIE Z Q, ELLIS S, XU W W, et al. A novel preparation of core-shell electrode materials via evaporation-induced self-assembly of nanoparticles for advanced Li-ion batteries[J]. Chemical Communications, 2015, 51(81): 15000-15003. doi: 10.1039/C5CC05577F
|
[22] |
ZHANG X, SHI C S, LIU E Z, et al. In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites Part A:Applied Science and Manufacturing, 2017, 103: 178-187.
|
[23] |
郭东丽, 赵志远, 尤世界等. 纳米限域催化剂在高级氧化水处理中的应用研究进展[J]. 材料导报, 2022, 36(20): 17-23.
GUO D L, ZHAO Z Y YOU S J, et al. Research advances in the application of nanoconfined catalysts in advanced oxidation water treatment[J]. Materials Reports, 2022, 36(20): 17-23 (in Chinese).
|
[24] |
GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433. doi: 10.1021/cr100449n
|
[25] |
GUO M Z, HE J, LI Y, et al. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol[J]. Journal of Hazardous Materials, 2016, 310: 89-97. doi: 10.1016/j.jhazmat.2016.02.016
|
[26] |
张小乐, 靳惠文, 陈泰宇等. 磁性空心纳米反应器及其类芬顿反应催化活性[J]. 华北理工大学学报(自然科学版), 2019, 41(1): 20-26.
ZHANG X L, JIN H W, CHEN T Y, et al. Magnetic hollow nano-reactor and fenton-like catalytic activity[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2019, 41(1): 20-26 (in Chinese).
|
[27] |
张彩霞, 霍彦廷, 邹来禧, 等. 碳纳米球复合g-C3N4提升光催化降解酸性橙Ⅱ性能[J]. 复合材料学报, 2021, 38(11): 3861-3871.
ZHANG C X, HUO Y T, ZOU L X, et al. Improvement of the performance of photocatalytic degradation of acid orange Ⅱ by carbon nanospheres combined with g-C3N4[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3861-3871 (in Chinese).
|
[28] |
DE VOLDER M F L, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science, 2013, 339(6119): 535-539. doi: 10.1126/science.1222453
|
[29] |
JOURNET C, MASER W K, BERNIER P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997, 388(6644): 756-758. doi: 10.1038/41972
|
[30] |
CHEN J B, ZHANG L M, HUANG T Y, et al. Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: Radical versus non-radical mechanism[J]. Journal of Hazardous Materials, 2016, 320: 571-580. doi: 10.1016/j.jhazmat.2016.07.038
|
[31] |
LIU Y B, PENG Y L, AN B H, et al. Effect of molecular structure on the adsorption affinity of sulfonamides onto CNTs: Batch experiments and DFT calculations[J]. Chemosphere, 2020, 246: 125778. doi: 10.1016/j.chemosphere.2019.125778
|
[32] |
FU H, DU Z J, ZOU W, et al. Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage[J]. Carbon, 2013, 65: 112-123. doi: 10.1016/j.carbon.2013.08.006
|
[33] |
李琴, 李兴兴, 解芳芳等. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(5): 178-184.
LI Q, LI X X, XIE F F, et al. Research progress in nanocellulose energy storage materials based on electrospinning and carbonization methods[J]. Journal of Textile Research, 2022, 43(5): 178-184 (in Chinese).
|
[34] |
JIANG S J, SONG S Q. Enhancing the performance of Co3O4/CNTs for the catalytic combustion of toluene by tuning the surface structures of CNTs[J]. Applied Catalysis B:Environmental, 2013, 140/141: 1-8. doi: 10.1016/j.apcatb.2013.03.040
|
[35] |
SAYDUL I M, MD R, ISRAT J, et al. Review—CNT-based water purification and treatment strategies[J]. ECS Journal of Solid State Science and Technology, 2023, 12(4): 041004. doi: 10.1149/2162-8777/acc9db
|
[36] |
DUAN Q N, LEE J C, LIU Y S, et al. Preparation and photocatalytic performance of MWCNTs/TiO2Nanocomposites for degradation of aqueous substrate[J]. Journal of Chemistry, 2016, 2016: 1-8.
|
[37] |
FANG C, HAO Z X, WANG Y L, et al. Carbon nanotube as a nanoreactor for efficient degradation of 3-aminophenol over CoO x/CNT catalyst[J]. Journal of Cleaner Production, 2023, 405: 136912. doi: 10.1016/j.jclepro.2023.136912
|
[38] |
LIU T M, YUAN G B, LV G C, et al. Synthesis of a novel catalyst MnO/CNTs for microwave-induced degradation of tetracycline[J]. Catalysts, 2019, 9(11): 911. doi: 10.3390/catal9110911
|
[39] |
HUANG L, ZHANG H, ZENG T, et al. Synergistically enhanced heterogeneous activation of persulfate for aqueous carbamazepine degradation using Fe3O4@SBA-15[J]. Science of the Total Environment, 2021, 760: 144027. doi: 10.1016/j.scitotenv.2020.144027
|
[40] |
周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
ZHOU J, CHEN P P. Modification of 2D nanomaterials and their applications in environment pollution treatment[J]. Progress in Chemistry, 2022, 34(6): 1414-1430 (in Chinese).
|
[41] |
常泰维, 刘正, 鲁亮等. 超越石墨烯: 二维纳米材料[J]. 大学化学, 2017, 32(4): 79-87. doi: 10.3866/PKU.DXHX201603009
CHANG T W, LIU Z, LU L, et al. Beyond graphene: 2D nanostructured materials[J]. University Chemistry, 2017, 32(4): 79-87 (in Chinese). doi: 10.3866/PKU.DXHX201603009
|
[42] |
XU J, WANG L, ZHU Y F. Decontamination of bisphenol A from aqueous solution by graphene adsorption[J]. Langmuir, 2012, 28(22): 8418-8425. doi: 10.1021/la301476p
|
[43] |
JIAO T F, GUO H Y, ZHANG Q R, et al. Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment[J]. Scientific Reports, 2015, 5: 11873. doi: 10.1038/srep11873
|
[44] |
齐宇, 陈发旺, 孙任辉等. 贵金属负载氧化石墨烯二氧化钛光催化消除甲硫醇三甲胺性能探究[J]. 环境化学, 2023, 42(4): 1381-1388. doi: 10.7524/j.issn.0254-6108.2021103001
QI Y, CHEN F W, SUN R H, et al. Research on the photocatalytic elimination of methyl mercaptan trimethylamine by noble metal-doped graphene oxide TiO2[J]. Environmental Chemistry, 2023, 42(4): 1381-1388 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021103001
|
[45] |
李晨旭, 彭伟, 方振东等. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 材料导报, 2018, 32(13): 2223-2229. doi: 10.11896/j.issn.1005-023X.2018.13.013
LI C X, PENG W, FANG Z D, et al. Water pollutants oxidation degradation through the activation of peroxymonosulfate(PMS) heterogeneously catalyzed by transition metal oxide: A review[J]. Materials Review, 2018, 32(13): 2223-2229 (in Chinese). doi: 10.11896/j.issn.1005-023X.2018.13.013
|
[46] |
HASSAN M S, TIRTH V, ALORABI A Q, et al. Bi2WO6 nanoflakes incorporated carbon nanofibers to control biological and chemical pollutants: Bifunctional application[J]. Chemical Engineering Communications, 2022, 209(6): 844-851. doi: 10.1080/00986445.2021.1922892
|
[47] |
曾辉, 周启星. 二硫化钼在水环境修复中的应用前景分析[J]. 地球科学进展, 2022, 37(5): 462-471.
ZENG H, ZHOU Q X. Analyzing the applicability of molybdenum disulfide in water-environment remediation[J]. Advances in Earth Science, 2022, 37(5): 462-471 (in Chinese).
|
[48] |
YANG L X, ZHENG X T, LIU M, et al. Fast photoelectro-reduction of CrVI over MoS2@TiO2 nanotubes on Ti wire[J]. Journal of Hazardous Materials, 2017, 329: 230-240. doi: 10.1016/j.jhazmat.2017.01.045
|
[49] |
YAN X, GAO Q, HUI X Y, et al. Fabrication of g-C3N4/MoS2 nanosheet heterojunction by facile ball milling method and its visible light photocatalytic performance[J]. Rare Metal Materials and Engineering, 2018, 47(10): 3015-3020. doi: 10.1016/S1875-5372(18)30226-1
|
[50] |
WANG X M, CHEN Y M, LI T, et al. High-efficient elimination of roxarsone by MoS2@Schwertmannite via heterogeneous photo-Fenton oxidation and simultaneous arsenic immobilization[J]. Chemical Engineering Journal, 2021, 405: 126952. doi: 10.1016/j.cej.2020.126952
|
[51] |
ZHOU H C, LONG J R, YAGHI O M. Introduction to metal–organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. doi: 10.1021/cr300014x
|
[52] |
LEI Z D, XUE Y C, CHEN W Q, et al. The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B(Fe) and the photocatalytic activities[J]. Small, 2018, 14(35): 1802045. doi: 10.1002/smll.201802045
|
[53] |
ZHANG K, CAO H Y, DAR A, et al. Construction of oxygen defective ZnO/ZnFe2O4 yolk-shell composite with photothermal effect for tetracycline degradation: Performance and mechanism insight[J]. Chinese Chemical Letters, 2023, 34(1): 107308. doi: 10.1016/j.cclet.2022.03.031
|
[54] |
WANG L W, CHONG J, FU Y Z, et al. A novel strategy for the design of Au@CdS yolk-shell nanostructures and their photocatalytic properties[J]. Journal of Alloys and Compounds, 2020, 834: 155051. doi: 10.1016/j.jallcom.2020.155051
|
[55] |
ZHANG S, HEDTKE T, ZHU Q H, et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment[J]. Environmental Science & Technology, 2021, 55(13): 9266-9275.
|
[56] |
ZHANG S, SUN M, HEDTKE T, et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement[J]. Environmental Science & Technology, 2020, 54(17): 10868-10875.
|
[57] |
WU Y Q, HE T, XU W, et al. Preparation and photocatalytic activity of magnetically separable Fe3O4@ZnO nanospheres[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(11): 12155-12159. doi: 10.1007/s10854-016-5369-5
|
[58] |
DUAN Y, ZHOU S K, DENG L, et al. Enhanced photocatalytic degradation of sulfadiazine via g-C3N4/carbon dots nanosheets under nanoconfinement: Synthesis, Biocompatibility and Mechanism[J]. Journal of Environmental Chemical Engineering, 2020, 8(6): 104612. doi: 10.1016/j.jece.2020.104612
|
[59] |
MA Y Y, JI B X, LV X F, et al. Confined heterogeneous catalysis by boron nitride-Co3O4 nanosheet cluster for peroxymonosulfate oxidation toward ranitidine removal[J]. Chemical Engineering Journal, 2022, 435: 135126. doi: 10.1016/j.cej.2022.135126
|
[60] |
MA Y Y, XIONG D B, LV X F, et al. Rapid and long-lasting acceleration of zero-valent iron nanoparticles@Ti3C2-based MXene/peroxymonosulfate oxidation with bi-active centers toward ranitidine removal[J]. Journal of Materials Chemistry A, 2021, 9(35): 19817-19833. doi: 10.1039/D1TA02046C
|
[61] |
JIA C, WU Y, XU L J, et al. Adjusting radical/non-radical species ratio in MnO2/CoFe2O4 activated peroxymonosulfate system through changing inner-outer positioning for enhanced endocrine disrupting chemicals degradation: A comparative study[J]. Applied Surface Science, 2023, 612: 155880. doi: 10.1016/j.apsusc.2022.155880
|
[62] |
LIU B M, SONG W B, WU H X, et al. Degradation of norfloxacin with peroxymonosulfate activated by nanoconfinement Co3O4@CNT nanocomposite[J]. Chemical Engineering Journal, 2020, 398: 125498. doi: 10.1016/j.cej.2020.125498
|
[63] |
YU R, MA R, WANG L Z, et al. Activation of peroxydisulfate (PDS) by Bi5O7I@MIL-100(Fe) for catalytic degradation of aqueous doxycycline (DOX) under UV light irradiation: Characteristic, performance and mechanism[J]. Journal of Water Process Engineering, 2022, 48: 102903. doi: 10.1016/j.jwpe.2022.102903
|
[64] |
SHI H, HE Y, LI Y B, et al. Confined ultrasmall MOF nanoparticles anchored on a 3D-graphene network as efficient and broad pH-adaptive photo Fenton-like catalysts[J]. Environmental Science:Nano, 2022, 9(3): 1091-1105. doi: 10.1039/D1EN00944C
|
[65] |
YANG L, HU C, NIE Y L, et al. Catalytic ozonation of selected pharmaceuticals over mesoporous alumina-supported manganese oxide[J]. Environmental Science & Technology, 2009, 43(7): 2525-2529.
|
[66] |
ZENG T, ZHANG X L, WANG S H, et al. Assembly of a nanoreactor system with confined magnetite core and shell for enhanced fenton-like catalysis[J]. Chemistry – A European Journal, 2014, 20(21): 6474-6481. doi: 10.1002/chem.201304221
|
[67] |
OH W D, DONG Z L, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B:Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
|
[68] |
ZHOU D N, ZHANG H, CHEN L. Sulfur-replaced Fenton systems: Can sulfate radical substitute hydroxyl radical for advanced oxidation technologies?[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5): 775-779.
|
[69] |
胡晓. 臭氧高级氧化技术在水处理领域的研究进展[J]. 安徽农学通报, 2017, 23(16): 104, 155.
HU X. Research progress of advanced ozone oxidation technology in water treatment field[J]. Anhui Agricultural Science Bulletin, 2017, 23(16): 104, 155 (in Chinese).
|