[1] |
JI Y M, SHI Q J, LI Y X, et al. Carbenium ion-mediated oligomerization of methylglyoxal for secondary organic aerosol formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(24): 13294-13299.
|
[2] |
ZHANG X, SEINFELD J H. A functional group oxidation model (FGOM) for SOA formation and aging[J]. Atmospheric Chemistry and Physics, 2013, 13(12): 5907-5926. doi: 10.5194/acp-13-5907-2013
|
[3] |
ROBINSON A L, DONAHUE N M, SHRIVASTAVA M K, et al. Rethinking organic aerosols: Semivolatile emissions and photochemical aging[J]. Science, 2007, 315(5816): 1259-1262. doi: 10.1126/science.1133061
|
[4] |
XU R X, ALAM M S, STARK C, et al. Behaviour of traffic emitted semi-volatile and intermediate volatility organic compounds within the urban atmosphere[J]. Science of the Total Environment, 2020, 720: 137470. doi: 10.1016/j.scitotenv.2020.137470
|
[5] |
MAY A A, PRESTO A A, HENNIGAN C J, et al. Gas-particle partitioning of primary organic aerosol emissions: (2) diesel vehicles[J]. Environmental Science & Technology, 2013, 47(15): 8288-8296.
|
[6] |
CHAN A W H, KREISBERG N M, HOHAUS T, et al. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011[J]. Atmospheric Chemistry and Physics, 2016, 16(2): 1187-1205. doi: 10.5194/acp-16-1187-2016
|
[7] |
ZHAO Y L, NGUYEN N T, PRESTO A A, et al. Intermediate volatility organic compound emissions from on-road diesel vehicles: Chemical composition, emission factors, and estimated secondary organic aerosol production[J]. Environmental Science & Technology, 2015, 49(19): 11516-11526.
|
[8] |
DROZD G T, ZHAO Y L, SALIBA G, et al. Detailed speciation of intermediate volatility and semivolatile organic compound emissions from gasoline vehicles: Effects of cold-starts and implications for secondary organic aerosol formation[J]. Environmental Science & Technology, 2019, 53(3): 1706-1714.
|
[9] |
CAI S Y, ZHU L, WANG S X, et al. Time-resolved intermediate-volatility and semivolatile organic compound emissions from household coal combustion in northern China[J]. Environmental Science & Technology, 2019, 53(15): 9269-9278.
|
[10] |
SONG K, GUO S, GONG Y Z, et al. Non-target scanning of organics from cooking emissions using comprehensive two-dimensional gas chromatography-mass spectrometer (GC × GC-MS)[J]. Applied Geochemistry, 2023, 151: 105601. doi: 10.1016/j.apgeochem.2023.105601
|
[11] |
McDONALD B C, de GOUW J A, GILMAN J B, et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions[J]. Science, 2018, 359(6377): 760-764. doi: 10.1126/science.aaq0524
|
[12] |
MA P K, ZHAO Y L, ROBINSON A L, et al. Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9237-9259. doi: 10.5194/acp-17-9237-2017
|
[13] |
ZHAO Y L, HENNIGAN C J, MAY A A, et al. Intermediate-volatility organic compounds: A large source of secondary organic aerosol[J]. Environmental Science & Technology, 2014, 48(23): 13743-13750.
|
[14] |
FANG H, HUANG X Q, XIAO S X, et al. Intermediate-volatility organic compounds observed in a coastal megacity: Importance of non-road source emissions[J]. Journal of Geophysical Research:Atmospheres, 2022, 127(19): 037301.
|
[15] |
GOLDSTEIN A H, GALBALLY I E. Known and unexplored organic constituents in the earth’s atmosphere[J]. Environmental Science & Technology, 2007, 41(5): 1514-1521.
|
[16] |
DUNMORE R E, HOPKINS J R, LIDSTER R T, et al. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities[J]. Atmospheric Chemistry and Physics, 2015, 15(17): 9983-9996. doi: 10.5194/acp-15-9983-2015
|
[17] |
XU C, GAO L R, ZHENG M H, et al. Nontarget screening of polycyclic aromatic compounds in atmospheric particulate matter using ultrahigh resolution mass spectrometry and comprehensive two-dimensional gas chromatography[J]. Environmental Science & Technology, 2021, 55(1): 109-119.
|
[18] |
谭鑫, 袁斌, 王超敏, 等. 环境大气中半/中等挥发性有机物(S/IVOCs)的测量技术进展[J]. 中国环境科学, 2020, 40(10): 4224-4236. doi: 10.3969/j.issn.1000-6923.2020.10.005
TAN X, YUAN B, WANG C M, et al. Progress in measurements of semi-/intermediate-volatile organic compounds in ambient air[J]. China Environmental Science, 2020, 40(10): 4224-4236 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.005
|
[19] |
唐荣志, 王辉, 刘莹, 等. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190.
TANG R Z, WANG H, LIU Y, et al. Constituents of atmospheric semi-volatile and intermediate volatility organic compounds and their contribution to organic aerosol[J]. Progress in Chemistry, 2019, 31(1): 180-190 (in Chinese).
|
[20] |
ZHANG Q, LI Z Y, WEI P, et al. Insights into the day-night sources and optical properties of coastal organic aerosols in Southern China[J]. Science of the Total Environment, 2022, 830: 154663. doi: 10.1016/j.scitotenv.2022.154663
|
[21] |
WANG S Q, HU Y J, YUAN Y F, et al. Size-resolved gas-particle partitioning characteristics of typical semi-volatile organic compounds in urban atmosphere[J]. Environmental Pollution, 2023, 320: 121101. doi: 10.1016/j.envpol.2023.121101
|
[22] |
WANG C M, YUAN B, WU C H, et al. Measurements of higher alkanes using NO+ chemical ionization in PTR-ToF-MS: Important contributions of higher alkanes to secondary organic aerosols in China[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 14123-14138. doi: 10.5194/acp-20-14123-2020
|
[23] |
FANG H, LUO S L, HUANG X Q, et al. Ambient naphthalene and methylnaphthalenes observed at an urban site in the Pearl River Delta region: Sources and contributions to secondary organic aerosol[J]. Atmospheric Environment, 2021, 252: 118295. doi: 10.1016/j.atmosenv.2021.118295
|
[24] |
HUANG X F, ZHANG B, XIA S Y, et al. Sources of oxygenated volatile organic compounds (OVOCs) in urban atmospheres in North and South China[J]. Environmental Pollution, 2020, 261: 114152. doi: 10.1016/j.envpol.2020.114152
|
[25] |
XU T T, JIANG L, YANG X, et al. Design and application of a novel integrated microsampling system for simultaneous collection of gas- and particle-phase semivolatile organic compounds[J]. Atmospheric Environment, 2017, 149: 1-11. doi: 10.1016/j.atmosenv.2016.11.022
|
[26] |
LI Y J, REN B N, QIAO Z, et al. Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels[J]. Atmospheric Environment, 2019, 210: 58-65. doi: 10.1016/j.atmosenv.2019.04.041
|
[27] |
REN B N, ZHU J P, TIAN L J, et al. An alternative semi-quantitative GC/MS method to estimate levels of airborne intermediate volatile organic compounds (IVOCs) in ambient air[J]. Atmospheric Environment:X, 2020, 6: 100075. doi: 10.1016/j.aeaoa.2020.100075
|
[28] |
王攀攀, 李英杰, 张帆, 等. 上海洋山港环境空气IVOCs的浓度、组成和G20期间变化特征[J]. 地球化学, 2018, 47(3): 313-321.
WANG P P, LI Y J, ZHANG F, et al. Concentration, composition and variation of ambient IVOCs in Shanghai Port during the G20 summit[J]. Geochimica, 2018, 47(3): 313-321 (in Chinese).
|
[29] |
TANG J Y, LI Y J, LI X L, et al. Intermediate volatile organic compounds emissions from vehicles under real world conditions[J]. Science of the Total Environment, 2021, 788: 147795. doi: 10.1016/j.scitotenv.2021.147795
|
[30] |
GOU Y F, QIN C, LIAO H, et al. Measurements, gas/particle partitioning, and sources of nonpolar organic molecular markers at a suburban site in the West Yangtze River Delta, China[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(19): 034080.
|
[31] |
WU D H, LIU H X, WANG Z G, et al. Atmospheric Concentrations and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in typical urban-rural fringe of wuhan-ezhou region, central China[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 96-106. doi: 10.1007/s00128-019-02743-6
|
[32] |
FENG X X, ZHAO J H, FENG Y L, et al. Chemical characterization, source, and SOA production of intermediate volatile organic compounds during haze episodes in North China[J]. Atmosphere, 2021, 12(11): 1484. doi: 10.3390/atmos12111484
|
[33] |
BAI X R, WEI J, REN Y Q, et al. Pollution characteristics and health risk assessment of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons during heating season in Beijing[J]. Journal of Environmental Sciences (China), 2023, 123: 169-182. doi: 10.1016/j.jes.2022.02.047
|
[34] |
ZHANG Y A, FAN J S, SONG K, et al. Secondary organic aerosol formation from semi-volatile and intermediate volatility organic compounds in the fall in Beijing[J]. Atmosphere, 2022, 14(1): 94. doi: 10.3390/atmos14010094
|
[35] |
刘碧莲, 吴水平, 杨冰玉, 等. 大气中多环芳烃气/粒分配的不确定性分析[J]. 环境科学, 2011, 32(9): 2794-2799.
LIU B L, WU S P, YANG B Y, et al. Uncertainty analysis of gas/particle partitioning of atmospheric polycyclic aromatic hydrocarbons[J]. Environmental Science, 2011, 32(9): 2794-2799 (in Chinese).
|
[36] |
XU R X, ALAM M S, STARK C, et al. Composition and emission factors of traffic- emitted intermediate volatility and semi-volatile hydrocarbons (C10–C36) at a street canyon and urban background sites in central London, UK[J]. Atmospheric Environment, 2020, 231: 117448. doi: 10.1016/j.atmosenv.2020.117448
|
[37] |
FLORES R M, ÖZDEMIR H, ÜNAL A, et al. Distribution and sources of SVOCs in fine and coarse aerosols in the megacity of Istanbul[J]. Atmospheric Research, 2022, 271: 106100. doi: 10.1016/j.atmosres.2022.106100
|
[38] |
DRVENTIĆ I, ŠALA M, VIDOVIĆ K, et al. Direct quantification of PAHs and nitro-PAHs in atmospheric PM by thermal desorption gas chromatography with electron ionization mass spectroscopic detection[J]. Talanta, 2023, 251: 123761. doi: 10.1016/j.talanta.2022.123761
|
[39] |
KRISTENSEN K, LUNDERBERG D M, LIU Y J, et al. Gas-particle partitioning of semivolatile organic compounds in a residence: Influence of particles from candles, cooking, and outdoors[J]. Environmental Science & Technology, 2023, 57(8): 3260-3269.
|
[40] |
WALLER R E. The benzpyrene content of town air[J]. British Journal of Cancer, 1952, 6(1): 8-21. doi: 10.1038/bjc.1952.2
|
[41] |
RAS M R, BORRULL F, MARCÉ R M. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3): 347-361. doi: 10.1016/j.trac.2008.10.009
|
[42] |
DOBSON R, SCHEYER A, RIZET A L, et al. Comparison of the efficiencies of different types of adsorbents at trapping currently used pesticides in the gaseous phase using the technique of high-volume sampling[J]. Analytical and Bioanalytical Chemistry, 2006, 386(6): 1781-1789. doi: 10.1007/s00216-006-0737-2
|
[43] |
BOUVIER-BROWN N C, CARRASCO E, KARZ J, et al. A portable and inexpensive method for quantifying ambient intermediate volatility organic compounds[J]. Atmospheric Environment, 2014, 94: 126-133. doi: 10.1016/j.atmosenv.2014.05.004
|
[44] |
GALARNEAU E, HARNER T, SHOEIB M, et al. A preliminary investigation of sorbent-impregnated filters (SIFs) as an alternative to polyurethane foam (PUF) for sampling gas-phase semivolatile organic compounds in air[J]. Atmospheric Environment, 2006, 40(29): 5734-5740. doi: 10.1016/j.atmosenv.2006.05.060
|
[45] |
CHENG Y, HE K B, DUAN F K, et al. Measurement of semivolatile carbonaceous aerosols and its implications: A review[J]. Environment International, 2009, 35(3): 674-681. doi: 10.1016/j.envint.2008.11.007
|
[46] |
FANG H, LOWTHER S D, ZHU M, et al. PM2.5-bound unresolved complex mixtures (UCM) in the Pearl River Delta region: Abundance, atmospheric processes and sources[J]. Atmospheric Environment, 2020, 226: 117407. doi: 10.1016/j.atmosenv.2020.117407
|
[47] |
WILLIAMS B J, GOLDSTEIN A H, KREISBERG N M, et al. An In-situ instrument for speciated organic composition of atmospheric aerosols: Thermal Desorption Aerosol GC/MS-FID (TAG)[J]. Aerosol Science and Technology, 2006, 40(8): 627-638. doi: 10.1080/02786820600754631
|
[48] |
ZHAO Y L, KREISBERG N M, WORTON D R, et al. Development of an in situ thermal desorption gas chromatography instrument for quantifying atmospheric semi-volatile organic compounds[J]. Aerosol Science and Technology, 2013, 47(3): 258-266. doi: 10.1080/02786826.2012.747673
|
[49] |
ZHAO Y F, YAO K X, TENG B Y, et al. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture[J]. Energy & Environmental Science, 2013, 6(12): 3684-3692.
|
[50] |
CHEN Y B, YUAN B, WANG C M, et al. Online measurements of cycloalkanes based on NO+ chemical ionization in proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS)[J]. Atmospheric Measurement Techniques, 2022, 15(23): 6935-6947. doi: 10.5194/amt-15-6935-2022
|
[51] |
EICHLER P, MÜLLER M, D'ANNA B, et al. A novel inlet system for online chemical analysis of semi-volatile submicron particulate matter[J]. Atmospheric Measurement Techniques, 2015, 8(3): 1353-1360. doi: 10.5194/amt-8-1353-2015
|
[52] |
李杰. 中等挥发性有机物在线分析方法建立及应用研究[D]. 徐州: 中国矿业大学, 2020.
LI J. Development of online analysis method for intermediate volatile organic compounds[D]. Xuzhou: China University of Mining and Technology, 2020 (in Chinese).
|
[53] |
LU J, LI Y J, LI J, et al. An online method for monitoring atmospheric intermediate volatile organic compounds with a thermal desorption-gas chromatography/mass spectrometry[J]. Journal of Chromatography. A, 2022, 1677: 463299. doi: 10.1016/j.chroma.2022.463299
|
[54] |
KALINA J, SCHERINGER M, BORŮVKOVÁ J, et al. Passive air samplers as a tool for assessing long-term trends in atmospheric concentrations of semivolatile organic compounds[J]. Environmental Science & Technology, 2017, 51(12): 7047-7054.
|
[55] |
KRÓL S, ZABIEGAŁA B, NAMIEŚNIK J. Monitoring and analytics of semivolatile organic compounds (SVOCs) in indoor air[J]. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1751-1769. doi: 10.1007/s00216-011-4910-x
|
[56] |
卢雅静, 冯艳丽, 钱哲, 等. 民用固体燃料源的IVOCs排放特征及燃烧温度的影响[J]. 环境科学, 2019, 40(10): 4404-4411.
LU Y J, FENG Y L, QIAN Z, et al. Emission characteristics of IVOCs from the combustion of residential solid fuels and the impact of burning temperature[J]. Environmental Science, 2019, 40(10): 4404-4411(in Chinese).
|
[57] |
ALAM M S, STARK C, HARRISON R M. Using variable ionization energy time-of-flight mass spectrometry with comprehensive GC × GC to identify isomeric species[J]. Analytical Chemistry, 2016, 88(8): 4211-4220. doi: 10.1021/acs.analchem.5b03122
|
[58] |
WORTON D R, DECKER M, ISAACMAN-VANWERTZ G, et al. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry[J]. The Analyst, 2017, 142(13): 2395-2403. doi: 10.1039/C7AN00625J
|
[59] |
LIU Z Y, PHILLIPS J B. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface[J]. Journal of Chromatographic Science, 1991, 29(6): 227-231. doi: 10.1093/chromsci/29.6.227
|
[60] |
ALAM M S, HARRISON R M. Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis[J]. Chemical Science, 2016, 7(7): 3968-3977. doi: 10.1039/C6SC00465B
|
[61] |
王珂, 王炜罡, 刘肖, 等. 中等挥发性有机物研究进展[J]. 环境化学, 2021, 40(10): 2960-2978. doi: 10.7524/j.issn.0254-6108.2021032906
WANG K, WANG W G, LIU X, et al. Research progress of intermediate volatility organic compounds[J]. Environmental Chemistry, 2021, 40(10): 2960-2978 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021032906
|
[62] |
ZHANG W F, ZHU S K, HE S, et al. Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis[J]. Journal of Chromatogr A, 2015, 1380: 162-170. doi: 10.1016/j.chroma.2014.12.068
|
[63] |
KALLIO M, JUSSILA M, RISSANEN T, et al. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry in the identification of organic compounds in atmospheric aerosols from coniferous forest[J]. Journal of Chromatography A, 2006, 1125(2): 234-243. doi: 10.1016/j.chroma.2006.05.050
|
[64] |
LIANG Z R, SALEHI F, YU Z H, et al. Characterizing the gaseous and particulate SVOC emissions of a commercial light-duty compression ignition engine via GC × GC-ToF-MS[J]. Fuel, 2021, 284: 118918. doi: 10.1016/j.fuel.2020.118918
|
[65] |
乔林, 高丽荣, 郑明辉, 等. 利用全二维气相色谱-飞行时间质谱和傅立叶变换离子回旋共振质谱联合开展环境样品中有机污染物非靶标筛查研究. 见: 第三届全国质谱分析学术报告会. 中国化学会, 2017.190.
|
[66] |
LINDINGER W, HANSEL A, JORDAN A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. International Journal of Mass Spectrometry and Ion Processes, 1998, 173(3): 191-241. doi: 10.1016/S0168-1176(97)00281-4
|
[67] |
HOLZINGER R, WILLIAMS J, HERRMANN F, et al. Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS): A new approach to study processing of organic aerosols[J]. Atmospheric Chemistry and Physics, 2010, 10(5): 2257-2267. doi: 10.5194/acp-10-2257-2010
|
[68] |
LASKIN A, LASKIN J, NIZKORODOV S A. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: Critical review of the most recent advances[J]. Environmental Chemistry, 2012, 9(3): 163. doi: 10.1071/EN12052
|
[69] |
HEARD D E, PILLING M J. Measurement of OH and HO2 in the troposphere[J]. Chemical Reviews, 2003, 103(12): 5163-5198. doi: 10.1021/cr020522s
|
[70] |
YATAVELLI R L N, LOPEZ-HILFIKER F, WARGO J D, et al. A chemical ionization high-resolution time-of-flight mass spectrometer coupled to a micro orifice volatilization impactor (MOVI-HRToF-CIMS) for analysis of gas and particle-phase organic species[J]. Aerosol Science and Technology, 2012, 46(12): 1313-1327. doi: 10.1080/02786826.2012.712236
|
[71] |
JOKINEN T, SIPILÄ M, JUNNINEN H, et al. Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF[J]. Atmospheric Chemistry and Physics, 2012, 12(9): 4117-4125. doi: 10.5194/acp-12-4117-2012
|
[72] |
LEE B H, LOPEZ-HILFIKER F D, MOHR C, et al. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: Application to atmospheric inorganic and organic compounds[J]. Environmental Science & Technology, 2014, 48(11): 6309-6317.
|
[73] |
LOPEZ-HILFIKER F D, MOHR C, EHN M, et al. A novel method for online analysis of gas and particle composition: Description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO)[J]. Atmospheric Measurement Techniques, 2013, 7: 983-1001.
|
[74] |
LIM Y B, ZIEMANN P J. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx[J]. Environmental Science & Technology, 2009, 43(7): 2328-2334.
|
[75] |
LIM Y B, ZIEMANN P J. Products and mechanism of secondary organic aerosol formation from reactions of n-alkanes with OH radicals in the presence of NOx[J]. Environmental Science & Technology, 2005, 39(23): 9229-9236.
|
[76] |
ZHU X M, HAN Y, FENG Y L, et al. Formation and emission characteristics of intermediate volatile organic compounds (IVOCs) from the combustion of biomass and their cellulose, hemicellulose, and lignin[J]. Atmospheric Environment, 2022, 286: 119217. doi: 10.1016/j.atmosenv.2022.119217
|
[77] |
FRASER M P, CASS G R, SIMONEIT B R T, et al. Air quality model evaluation data for organics. 4. C2–C36 non-aromatic hydrocarbons[J]. Environmental Science & Technology, 1997, 31(8): 2356-2367.
|
[78] |
HUANG A Z, YIN S S, YUAN M H, et al. Characteristics, source analysis and chemical reactivity of ambient VOCs in a heavily polluted city of central China[J]. Atmospheric Pollution Research, 2022, 13(4): 101390. doi: 10.1016/j.apr.2022.101390
|
[79] |
WANG J Z, HO S S H, MA S X, et al. Characterization of PM2.5 in Guangzhou, China: Uses of organic markers for supporting source apportionment[J]. Science of the Total Environment, 2016, 550: 961-971. doi: 10.1016/j.scitotenv.2016.01.138
|
[80] |
ZHAO Y L, NGUYEN N T, PRESTO A A, et al. Intermediate volatility organic compound emissions from on-road gasoline vehicles and small off-road gasoline engines[J]. Environmental Science & Technology, 2016, 50(8): 4554-4563.
|
[81] |
MA J, CHEN L L, GUO Y, et al. Phthalate diesters in Airborne PM2.5 and PM10 in a suburban area of Shanghai: Seasonal distribution and risk assessment[J]. Science of the Total Environment, 2014, 497/498: 467-474. doi: 10.1016/j.scitotenv.2014.08.012
|
[82] |
AN T C, GAO Y P, LI G Y, et al. Kinetics and mechanism of (•)OH-center mediated degradation of dimethyl phthalate in aqueous solution: Experimental and theoretical studies[J]. Environmental Science & Technology, 2014, 48(1): 641-648.
|
[83] |
武姿辰, 朱超飞, 李晓秀, 等. 基于GC-QTOF/MS的大气中有机污染物的非靶标筛查及半定量分析[J]. 环境化学, 2021, 40(12): 3698-3705. doi: 10.7524/j.issn.0254-6108.2021051304
WU Z C, ZHU C F, LI X X, et al. Non-target screening and semi-quantitative analysis of organic pollutants in the atmosphere based on GC-QTOF/MS[J]. Environmental Chemistry, 2021, 40(12): 3698-3705 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021051304
|
[84] |
ALAM M S, ZERAATI-REZAEI S, LIANG Z R, et al. Mapping and quantifying isomer sets of hydrocarbons ( ≥ C12) in diesel exhaust, lubricating oil and diesel fuel samples using GC × GC-ToF-MS[J]. Atmospheric Measurement Techniques, 2018, 11(5): 3047-3058. doi: 10.5194/amt-11-3047-2018
|
[85] |
CHANG X, ZHAO B, ZHENG H T, et al. Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources[J]. One Earth, 2022, 5(4): 403-412. doi: 10.1016/j.oneear.2022.03.015
|
[86] |
HUO Y Q, GUO Z H, LIU Y Z, et al. Addressing unresolved complex mixture of I/SVOCs emitted from incomplete combustion of solid fuels by nontarget analysis[J]. Journal of Geophysical Research:Atmospheres, 2021, 126(23): 035835.
|
[87] |
UBUKATA M, JOBST K J, REINER E J, et al. Non-targeted analysis of electronics waste by comprehensive two-dimensional gas chromatography combined with high-resolution mass spectrometry: Using accurate mass information and mass defect analysis to explore the data[J]. Journal of Chromatography A, 2015, 1395: 152-159. doi: 10.1016/j.chroma.2015.03.050
|