[1] ZHANG X D, ZHANG G J, QIN X W, et al. Catalytic performance of CH4-CO2 reforming over metal free nitrogen-doped biomass carbon catalysts: Effect of different preparation methods[J]. International Journal of Hydrogen Energy, 2021, 46(62): 31586-31597. doi: 10.1016/j.ijhydene.2021.07.043
[2] 杨慧聪, 梁骥, 王振兴, 等. 多孔碳质材料在氧还原电催化中的应用[J]. 新型炭材料, 2016, 31(3): 243-263. YANG H C, LIANG J, WANG Z X, et al. Applications of porous carbon materials in the electrocatalysis of the oxygen reduction reaction[J]. New Carbon Materials, 2016, 31(3): 243-263 (in Chinese).
[3] YANG S L, PENG L, HUANG P P, et al. Nitrogen, phosphorus, and sulfur co-doped hollow carbon shell as superior metal-free catalyst for selective oxidation of aromatic alkanes[J]. Angewandte Chemie, 2016, 55(12): 4016-4020. doi: 10.1002/anie.201600455
[4] ZHOU Q, ZHAO Z K. Sulfate surfactant assisted approach to fabricate sulphur-doped supported nanodiamond catalyst on carbon nanotube with unprecedented catalysis for ethylbenzene dehydrogenation[J]. ChemCatChem, 2020, 12(1): 342-349. doi: 10.1002/cctc.201901267
[5] PARK J E, JANG Y J, KIM Y J, et al. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction[J]. Physical Chemistry Chemical Physics:PCCP, 2014, 16(1): 103-109. doi: 10.1039/C3CP54311K
[6] LIU Z W, PENG F, WANG H J, et al. Novel phosphorus-doped multiwalled nanotubes with high electrocatalytic activity for O2 reduction in alkaline medium[J]. Catalysis Communications, 2011, 16(1): 35-38. doi: 10.1016/j.catcom.2011.08.038
[7] FULVIO P F, LEE J S, MAYES R T, et al. Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties[J]. Physical Chemistry Chemical Physics:PCCP, 2011, 13(30): 13486-13491. doi: 10.1039/c1cp20631a
[8] PAN G X, CAO F, ZHANG Y J, et al. N-doped carbon nanofibers arrays as advanced electrodes for supercapacitors[J]. Journal of Materials Science & Technology, 2020, 55: 144-151.
[9] GUO F Q, PENG K Y, LIANG S, et al. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel, 2019, 258: 116204. doi: 10.1016/j.fuel.2019.116204
[10] 陈倍宁, 王恩语, 杨正爽, 等. 基于氮掺杂碳量子点的水体氟离子选择性荧光开启检测[J]. 环境化学, 2024, 43(3): 875-884. doi: 10.7524/j.issn.0254-6108.2022090802 CHEN B N, WANG E Y, YANG Z S, et al. Rapid and selective “turn-on ” fluorescent detection of fluoride ion in aqueous solution using nitrogen-doped carbon quantum dots[J]. Environmental Chemistry, 2024, 43(3): 875-884 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022090802
[11] ZHAO P, SHEN B X, YANG M T, et al. Effect of nitrogen species on electrochemical properties of N-doped carbon nanotubes derived from co-pyrolysis of low-density polyethylene and melamine[J]. Journal of Energy Storage, 2023, 67: 107569. doi: 10.1016/j.est.2023.107569
[12] JANA D, SUN C L, CHEN L C, et al. Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes[J]. Progress in Materials Science, 2013, 58(5): 565-635. doi: 10.1016/j.pmatsci.2013.01.003
[13] LIU L, LU J, ZHANG Y X, et al. Synthesis of nitrogen-doped graphitic carbon nanocapsules from a poly(ionic liquid) for CO2 capture[J]. New Carbon Materials, 2017, 32(4): 380-384. doi: 10.1016/S1872-5805(17)60129-X
[14] INAGAKI M, TOYODA M, SONEDA Y, et al. Nitrogen-doped carbon materials[J]. Carbon, 2018, 132: 104-140. doi: 10.1016/j.carbon.2018.02.024
[15] XIE C, YANG S H, XU X Q, et al. Core-shell structured carbon nanotubes/N-doped carbon layer nanocomposites for supercapacitor electrodes[J]. Journal of Nanoparticle Research, 2020, 22(1): 1-7. doi: 10.1007/s11051-019-4718-8
[16] 乔文强, 孙玺, 王连杰, 等. 含氮聚合物催化剂的制备及乙炔氢氯化性能研究[J]. 石油化工高等学校学报, 2022, 35(3): 30-35. QIAO W Q, SUN X, WANG L J, et al. Preparation of N-containing polymer catalyst and its performance in acetylene hydrochlorination[J]. Journal of Petrochemical Universities, 2022, 35(3): 30-35 (in Chinese).
[17] XIE W H, YAO X Y, LI H, et al. Biomass-based N-rich porous carbon materials for CO2 capture and in situ conversion[J]. ChemSusChem, 2022, 15(18): e202201004. doi: 10.1002/cssc.202201004
[18] ZHU X F, LUO Z J, GUO W W, et al. Reutilization of biomass pyrolysis waste: Tailoring dual-doped biochar from refining residue of bio-oil through one-step self-assembly[J]. Journal of Cleaner Production, 2022, 343: 131046. doi: 10.1016/j.jclepro.2022.131046
[19] MITOME T, HIROTA Y, UCHIDA Y, et al. Porous structure and pore size control of mesoporous carbons using a combination of a soft-templating method and a solvent evaporation technique[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 494: 180-185.
[20] CHEN C, YU D F, ZHAO G Y, et al. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors[J]. Nano Energy, 2016, 27: 377-389. doi: 10.1016/j.nanoen.2016.07.020
[21] ZHAO L, FAN L Z, ZHOU M Q, et al. Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors[J]. Advanced Materials, 2010, 22(45): 5202-5206. doi: 10.1002/adma.201002647
[22] CANDELARIA S L, GARCIA B B, LIU D W, et al. Nitrogen modification of highly porous carbon for improved supercapacitor performance[J]. Journal of Materials Chemistry, 2012, 22(19): 9884-9889. doi: 10.1039/c2jm30923h
[23] PENG H, MA G F, SUN K J, et al. Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(51): 29507-29516. doi: 10.1021/jp508684t
[24] LIU L, DENG Q F, MA T Y, et al. Ordered mesoporous carbons: Citric acid-catalyzed synthesis, nitrogen doping and CO2 capture[J]. Journal of Materials Chemistry, 2011, 21(40): 16001-16009. doi: 10.1039/c1jm12887f
[25] HORIKAWA T, SAKAO N, SEKIDA T, et al. Preparation of nitrogen-doped porous carbon by ammonia gas treatment and the effects of N-doping on water adsorption[J]. Carbon, 2012, 50(5): 1833-1842. doi: 10.1016/j.carbon.2011.12.033
[26] SHAKU B, MOFOKENG T P, COVILLE N J, et al. Biomass valorisation of marula nutshell waste into nitrogen-doped activated carbon for use in high performance supercapacitors[J]. Electrochimica Acta, 2023, 442: 141828. doi: 10.1016/j.electacta.2023.141828
[27] NIU L, YANG Q, WANG W, et al. Creation of nanopores and nitrogen doping in the surface layers of reduced graphene oxide electrode via ions implantation resulting in enhanced electrochemical performance for supercapacitor[J]. J Energy Storage, 2023, 58: 106453. doi: 10.1016/j.est.2022.106453
[28] SONG M, WANG C, ZHU C, et al. An effective fabrication and highly tunable microwave absorption of nitrogen-doped graphene[J]. Diamond and Related Materials, 2022, 129: 109348. doi: 10.1016/j.diamond.2022.109348
[29] WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 533: 47-58. doi: 10.1016/j.jcis.2018.08.039
[30] 王紫嫙, 王婕, 王兴源, 等. 氮掺杂多孔碳材料阳极制备及其在微生物燃料电池上的应用[J]. 环境化学, 2024, 43(2): 614-622. doi: 10.7524/j.issn.0254-6108.2022071204 WANG Z X, WANG J, WANG X Y, et al. Preparation of nitrogen-doped porous carbon anode and its application in microbial fuel cells[J]. Environmental Chemistry, 2024, 43(2): 614-622 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022071204
[31] WANG H Z, GUO W Q, SI Q S, et al. Non-covalent doping of carbon nitride with biochar: Boosted peroxymonosulfate activation performance and unexpected singlet oxygen evolution mechanism[J]. Chemical Engineering Journal, 2021, 418: 129504. doi: 10.1016/j.cej.2021.129504
[32] 罗明洪, 刘卫红. 氮掺杂碳纳米片载钴催化剂的制备及其对硼氢化钠的电催化氧化[J]. 化工新型材料, 2022, 50(8): 282-286. LUO M H, LIU W H. Preparation of Co/NCN catalyst and its electro-oxidation of NaBH4[J]. New Chemical Materials, 2022, 50(8): 282-286 (in Chinese).
[33] 王小波, 唐鹏, 丁聪, 等. 氮掺杂石墨烯高效移除水中4-氯苯酚[J]. 环境化学, 2017, 36(12): 2641-2649. doi: 10.7524/j.issn.0254-6108.2017051402 WANG X B, TANG P, DING C, et al. Efficient removal of 4-chlorophenol in water by nitrogen doped reduced graphene oxide[J]. Environmental Chemistry, 2017, 36(12): 2641-2649 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017051402
[34] 孙雪花, 张锦婷, 赵李艳, 等. 基于氮掺杂碳量子点的制备及其对Hg2+的响应[J]. 环境化学, 2021, 40(1): 321-326. doi: 10.7524/j.issn.0254-6108.2020061504 SUN X H, ZHANG J T, ZHAO L Y, et al. Preparation of nitrogen-doped carbon quantum dots and its response to Hg2+[J]. Environmental Chemistry, 2021, 40(1): 321-326 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020061504
[35] HE S, CHEN G Y, XIAO H, et al. Facile preparation of N-doped activated carbon produced from rice husk for CO2 capture[J]. Journal of Colloid and Interface Science, 2021, 582: 90-101. doi: 10.1016/j.jcis.2020.08.021
[36] ZHANG X, ZHANG S B, ZHANG J J, et al. Enhanced SO2 adsorption performance on nitrogen-doped biochar: Insights from generalized two-dimensional correlation infrared spectroscopy[J]. Fuel, 2023, 354: 129266. doi: 10.1016/j.fuel.2023.129266
[37] PREEYANGHAA M, VINESH V, SABARIKIRISHWARAN P, et al. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation[J]. Carbon, 2022, 192: 405-417. doi: 10.1016/j.carbon.2022.03.011
[38] GAO J H, WANG H, CAO X M, et al. Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural[J]. Molecular Catalysis, 2023, 535: 112890. doi: 10.1016/j.mcat.2022.112890
[39] CHAI B, YAN J T, WANG C L, et al. Enhanced visible light photocatalytic degradation of Rhodamine B over phosphorus doped graphitic carbon nitride[J]. Applied Surface Science, 2017, 391: 376-383. doi: 10.1016/j.apsusc.2016.06.180
[40] 叶雨阳. 生物质热解氮掺杂碳基催化剂的制备及其电催化氧还原性能研究[D]. 合肥: 中国科学技术大学, 2020. YE Y Y. Synthesis of nitrogen doped carbon-based catalyst derived from biomass pyrolysis and study on their catalytic performance for oxygen reduction reaction[D]. Hefei: University of Science and Technology of China, 2020 (in Chinese).
[41] 夏营港, 王聪, 刘冬澳, 等. N、S、P共掺杂沸石咪唑酯骨架(ZIF)多孔碳材料制备和电化学性能[J]. 广州化学, 2022, 47(5): 26-34. XIA Y G, WANG C, LIU D A, et al. Preparation and electrochemical properties of N, S, P co-doped zeolitic imidazolate frameworks(ZIF) porous carbon materials[J]. Guangzhou Chemistry, 2022, 47(5): 26-34 (in Chinese).
[42] 罗漩, 易子铭, 谢金伶, 等. 硼氮共掺杂多孔碳活化过硫酸盐降解罗丹明 B 性能和机制[J]. 环境化学, 2023, 42(11): 3849-3860. LUO X, YI Z M, XIE J L, et al. Performance and mechanism of boron-nitrogen co-doped porous carbon as permonosulfate activator for Rhodamine B degradation[J]. Environmental Chemistry,2023, 42(11): 3849-3860 (in Chinese).
[43] TENG N, LI J L, LU B Q, et al. The selective aerobic oxidation of 5-hydroxymethylfurfural to produce 2, 5-diformylfuran using Nitrogen-doped porous carbons as catalysts[J]. New Carbon Materials, 2019, 34(6): 593-599. doi: 10.1016/S1872-5805(19)60034-X
[44] LEI G C, FAN Z J, HOU Y F, et al. Facile template-free synthesis of 3D cluster-like nitrogen-doped mesoporous carbon as metal-free catalyst for selective oxidation of H2S[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109095. doi: 10.1016/j.jece.2022.109095
[45] 马晓, 秦晓伟, 张晓娣, 等. 氮掺杂生物质碳材料催化剂的制备及其催化CH4-CO2重整性能[J]. 洁净煤技术, 2022, 28(5): 59-70. MA X, QIN X W, ZHANG X D, et al. Preparation of biomass nitrogen-doped carbon material catalyst and its catalytic performance for CO2 reforming of CH4[J]. Clean Coal Technology, 2022, 28(5): 59-70 (in Chinese).
[46] CHEN W, FANG Y, LI K X, et al. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products[J]. Applied Energy, 2020, 260: 114242. doi: 10.1016/j.apenergy.2019.114242
[47] PHAM L K H, KONGPARAKUL S, DING M Y, et al. High-efficiency catalytic pyrolysis of palm kernel shells over Ni2P/nitrogen-doped activated carbon catalysts[J]. Biomass and Bioenergy, 2023, 174: 106836. doi: 10.1016/j.biombioe.2023.106836
[48] XU Z, ZHOU S Z, ZHU M Y. Ni catalyst supported on nitrogen-doped activated carbon for selective hydrogenation of acetylene with high concentration[J]. Catalysis Communications, 2021, 149: 106241. doi: 10.1016/j.catcom.2020.106241
[49] ZHANG X Y, LIU H B, SHENG X, et al. Nitrogen-doped carbon supported nanocobalt for the synthesis of functionalized triazines via oxidative cleavage of biomass derived vicinal diols as carbon synthons[J]. Journal of Catalysis, 2022, 408: 227-235. doi: 10.1016/j.jcat.2022.03.013
[50] WU G, LI D Y, DAI C S, et al. Well-dispersed high-loading pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2008, 24(7): 3566-3575. doi: 10.1021/la7029278
[51] SOLANGI N H, HUSSIN F, ANJUM A, et al. A review of encapsulated ionic liquids for CO2 capture[J]. Journal of Molecular Liquids, 2023, 374: 121266. doi: 10.1016/j.molliq.2023.121266
[52] DING S, LIU Y X. Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars[J]. Fuel, 2020, 260: 116382. doi: 10.1016/j.fuel.2019.116382
[53] CHIANG Y C, JUANG R S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214-234. doi: 10.1016/j.jtice.2016.12.014
[54] SHAO L S, WAN H A, WANG L Z, et al. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption[J]. Separation and Purification Technology, 2023, 313: 123440. doi: 10.1016/j.seppur.2023.123440
[55] GE K, HE Y T, CAI W Y, et al. Nitrogen-doped microporous carbon materials derived from DBU-modified carboxylic acid polymers for CO2 capture[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107849. doi: 10.1016/j.jece.2022.107849
[56] YUAN X Z, LI S J, JEON S, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010. doi: 10.1016/j.jhazmat.2020.123010
[57] YU J, SO J. Synthesis and characterization of nitrogen-containing hydrothermal carbon with ordered mesostructure[J]. Chemical Physics Letters, 2019, 716: 237-246. doi: 10.1016/j.cplett.2018.12.014
[58] 孙飞, 高继慧, 曲智斌, 等. 碳基材料纳孔空间内SO2吸附转化机理[J]. 中国电机工程学报, 2019, 39(20): 5979-5988,6178. SUN F, GAO J H, QU Z B, et al. Mechanism of SO2 adsorption and conversion in nanopores of carbon-based materials[J]. Proceedings of the CSEE, 2019, 39(20): 5979-5988,6178 (in Chinese).
[59] 左盼星. 氮掺杂碳基吸附药物的研制与性能研究[D]. 石家庄: 河北科技大学, 2021. ZUO P X. Preparation and properties of nitrogen-doped carbon-based adsorbent drugs[D]. Shijiazhuang: Hebei University of Science and Technology, 2021 (in Chinese).
[60] 王亮, 柳馨, 汪长安, 等. N掺杂多孔碳海绵定形芒硝基复合相变材料的制备及其热性能[J]. 储能科学与技术, 2023, 12(1): 79-85. WANG L, LIU X, WANG C A, et al. Preparation and thermal performance of nitrogen-doped porous carbon sponge-type mirabilite-based composite phase-change material[J]. Energy Storage Science and Technology, 2023, 12(1): 79-85 (in Chinese).
[61] 吴尚迪, 葛夏菁, 余雅琳, 等. 基于席夫碱反应合成氮掺杂的碳活化PMS降解双酚A[J]. 环境化学, 2022, 41(1): 340-351. doi: 10.7524/j.issn.0254-6108.2020082601 WU S D, GE X J, YU Y L, et al. Degradation of BPA by activating PMS over N-doped carbon synthesized based on Schiff base reaction[J]. Environmental Chemistry, 2022, 41(1): 340-351 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082601
[62] PENG X, LUO Z J, XIE H M, et al. Removal of phenylarsonic acid compounds by porous nitrogen doped carbon: Experimental and DFT study[J]. Applied Surface Science, 2022, 606: 154859. doi: 10.1016/j.apsusc.2022.154859
[63] CHEN W J, HE H M, LEI L L, et al. Green synthesis of novel Fe nanoparticles embedded in N-doped biochar composites derived from bagasse for sulfadiazine degradation via peroxymonosulfate activator: Mechanism insight and performance assessment[J]. Journal of Water Process Engineering, 2022, 49: 103131. doi: 10.1016/j.jwpe.2022.103131
[64] ZHU K, BIN Q, SHEN Y Q, et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants[J]. Chemical Engineering Journal, 2020, 402: 126090. doi: 10.1016/j.cej.2020.126090
[65] ZOU Y B, LI W T, YANG L, et al. Activation of peroxymonosulfate by sp2-hybridized microalgae-derived carbon for ciprofloxacin degradation: Importance of pyrolysis temperature[J]. Chemical Engineering Journal, 2019, 370: 1286-1297. doi: 10.1016/j.cej.2019.04.002
[66] 余本善, 孙乃达, 焦姣. 储能技术与产业现状及发展趋势[J]. 石油科技论坛, 2017, 36(1): 57-61,67. YU B S, SUN N D, JIAO J. Current conditions and development trend of energy-storing technology and industry[J]. Oil Forum, 2017, 36(1): 57-61,67 (in Chinese).
[67] SHARMILI N, NAGI R, WANG P F. A review of research in the Li-ion battery production and reverse supply chains[J]. Journal of Energy Storage, 2023, 68: 107622. doi: 10.1016/j.est.2023.107622
[68] MAGETO T, BHOYATE S D, de SOUZA F M, et al. Developing practical solid-state rechargeable Li-ion batteries: Concepts, challenges, and improvement strategies[J]. Journal of Energy Storage, 2022, 55: 105688. doi: 10.1016/j.est.2022.105688
[69] WANG B L, JIAO R T, SHI F, et al. Novel strategy for efficient conversion of biomass into N-doped graphitized carbon nanosheets as high-performance electrode material for supercapacitor[J]. Journal of Physics and Chemistry of Solids, 2023, 181: 111509. doi: 10.1016/j.jpcs.2023.111509
[70] SHI J, LIN N, LIN H B, et al. A N-doped rice husk-based porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. New Carbon Materials, 2020, 35(4): 401-409. doi: 10.1016/S1872-5805(20)60497-8
[71] 刘磊, 安升辉, 张建. 氮掺杂缺陷类石墨烯碳纳米材料的制备及电催化氧还原性能研究[J]. 当代化工研究, 2020(14): 34-35. LIU L, AN S H, ZHANG J. Preparation and electrocatalytic oxygen reduction study of N-doped defective graphene-like carbon nanomaterial[J]. Modern Chemical Research, 2020(14): 34-35 (in Chinese).
[72] JIN J T, JIANG P, QIAO X C, et al. Highly doped N, S-Codoped carbon nanomeshes for excellent electrocapacitive performance[J]. Journal of Alloys and Compounds, 2019, 803: 704-710. doi: 10.1016/j.jallcom.2019.06.295
[73] 武鲁明, 于海斌, 王亚权. 多孔碳材料的制备及其金属磷化物氧还原性能研究[J]. 无机盐工业, 2023, 55(4): 104-110. WU L M, YU H B, WANG Y Q. Study on preparation of porous carbon materials and oxygen reduction properties of their metal phosphide[J]. Inorganic Chemicals Industry, 2023, 55(4): 104-110 (in Chinese).
[74] LU G L, LI Z Y, FAN W X, et al. Sponge-like N-doped carbon materials with Co-based nanoparticles derived from biomass as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media[J]. RSC Advances, 2019, 9: 4843-4848. doi: 10.1039/C8RA10462J
[75] LIU H, LIU Z H, ZHANG J Q, et al. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction[J]. New Carbon Materials, 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4
[76] WANG X D, FANG J J, LIU X R, et al. Nitrogen-doped carbon as selectively permeable layer to enhance the anti-poisoning ability of hydrogen oxidation reaction catalysts for hydroxide exchange membrane fuel cells[J]. Applied Catalysis B:Environmental, 2023, 327: 122442. doi: 10.1016/j.apcatb.2023.122442
[77] 赵学洋. 氮掺杂多孔碳基材料电催化还原性能调控及其污染物转化与CO2还原研究[D]. 大连: 大连理工大学, 2021. ZHAO X Y. Regulation of electrocatalytic reduction performance of nitrogen-doped porous carbon-based materials and the electrocatalysis in pollutants conversion and CO2 reduction[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
[78] SUN Y, XUE S, SUN J H, et al. Silk-derived nitrogen-doped porous carbon electrodes with enhanced ionic conductivity for high-performance supercapacitors[J]. Journal of Colloid and Interface Science, 2023, 645: 297-305. doi: 10.1016/j.jcis.2023.04.130
[79] JIAN W B, ZHANG W L, WU B C, et al. Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: Activation mechanism and charge storage mechanism[J]. ACS Applied Materials & Interfaces, 2022, 14(4): 5425-5438.
[80] YEON J S, PARK S H, SUK J, et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382: 122946. doi: 10.1016/j.cej.2019.122946
[81] WAN L, XIAO R, LIU J X, et al. A novel strategy to prepare N, S-codoped porous carbons derived from barley with high surface area for supercapacitors[J]. Applied Surface Science, 2020, 518: 146265. doi: 10.1016/j.apsusc.2020.146265
[82] 王心如, 刘嘉怡, 丁晗, 等. 超级电容器碳材料的制备及性能测试[J]. 广州化工, 2022, 50(13): 76-80. WANG X R, LIU J Y, DING H, et al. Preparation and electrochemical performance testing of carbon materials for supercapacitors[J]. Guangzhou Chemical Industry, 2022, 50(13): 76-80 (in Chinese).
[83] WU Z Y, IQBAL Z, WANG X Q. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Frontiers of Chemical Science and Engineering, 2015, 9(3): 280-294. doi: 10.1007/s11705-015-1524-4
[84] 余星. 氮掺杂介孔碳纳米球的构筑及其作为药物载体的初步研究[D]. 广州: 广东药科大学, 2021. YU X. Fabrication of nitrogen doped mesoporous carbon nanospheres and their preliminary study as drug carriers[D]. Guangzhou: Guangdong Pharmaceutical University, 2021 (in Chinese).
[85] LU H Y, YANG G Z, RAN F, et al. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol[J]. Carbohydrate Polymers, 2020, 229: 115508. doi: 10.1016/j.carbpol.2019.115508
[86] 王领. 玉米秸秆制备氮掺杂碳量子点应用于检测白色念珠菌[D]. 吉林: 东北电力大学, 2019. WANG L. Synthesis of nitrogen-doped carbon quantum dots from cornstalk for detection of Candida albicans[D]. Jilin: Northeast Electric Power University, 2019 (in Chinese).