[1] KLOSKE M, WITKIEWICZ Z. Novichoks - The A group of organophosphorus chemical warfare agents[J]. Chemosphere, 2019, 221: 672-682. doi: 10.1016/j.chemosphere.2019.01.054
[2] FAN S Q, ZHANG G R, DENNISON G H, et al. Challenges in fluorescence detection of chemical warfare agent vapors using solid-state films[J]. Advanced Materials, 2020, 32(18): e1905785. doi: 10.1002/adma.201905785
[3] CHAUHAN S, CHAUHAN S, D'CRUZ R, et al. Chemical warfare agents[J]. Environmental Toxicology and Pharmacology, 2008, 26(2): 113-122. doi: 10.1016/j.etap.2008.03.003
[4] HU X C, ZENG H Y, CHEN T H, et al. Fast and visual detection of a chemical warfare agent mimic using a simple, effective and portable chemodosimeter[J]. Sensors and Actuators B:Chemical, 2020, 319: 128282. doi: 10.1016/j.snb.2020.128282
[5] BALASUBRAMANIAN S, KULANDAISAMY A J, BABU K J, et al. Metal organic framework functionalized textiles as protective clothing for the detection and detoxification of chemical warfare agents—a review[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4218-4239.
[6] DAGNAW F W, FENG W, SONG Q H. Selective and rapid detection of nerve agent simulants by polymer fibers with a fluorescent chemosensor in gas phase[J]. Sensors and Actuators B:Chemical, 2020, 318: 127937. doi: 10.1016/j.snb.2020.127937
[7] KEISAR O R, PEVZNER A, BAHETI A, et al. Selective detection of chemical warfare agents VX and Sarin by the short wavelength inner filter technique (SWIFT)[J]. Chemical Communications, 2020, 56(95): 15040-15043. doi: 10.1039/D0CC06948E
[8] PATIL L A, DEO V V, SHINDE M D, et al. Sensing of 2-chloroethyl ethyl sulfide (2-CEES) - a CWA simulant - using pure and platinum doped nanostructured CdSnO3 thin films prepared from ultrasonic spray pyrolysis technique[J]. Sensors and Actuators B:Chemical, 2011, 160(1): 234-243. doi: 10.1016/j.snb.2011.07.042
[9] OKUMURA T, TAKASU N, ISHIMATSU S, et al. Report on 640 victims of the Tokyo subway sarin attack[J]. Annals of Emergency Medicine, 1996, 28(2): 129-135. doi: 10.1016/S0196-0644(96)70052-5
[10] 南迪娜, 傅文翔, 李宝强, 等. 离子迁移谱检测化学战剂的研究进展[J]. 环境化学, 2020, 39(7): 1949-1962. doi: 10.7524/j.issn.0254-6108.2019102301 NAN D N, FU W X, LI B Q, et al. Application of ion mobility spectrometry in detection of chemical warfare agents[J]. Environmental Chemistry, 2020, 39(7): 1949-1962 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019102301
[11] JINDAL M K, MAINUDDIN M, VEERABUTHIRAN S, et al. Laser-based systems for standoff detection of CWA: A short review[J]. IEEE Sensors Journal, 2021, 21(4): 4085-4096. doi: 10.1109/JSEN.2020.3030672
[12] KUMAR V, KIM H, PANDEY B, et al. Recent advances in fluorescent and colorimetric chemosensors for the detection of chemical warfare agents: A legacy of the 21st century[J]. Chemical Society Reviews, 2023, 52(2): 663-704. doi: 10.1039/D2CS00651K
[13] TALMAGE S, WATSON A, HAUSCHILD V, et al. Chemical warfare agent degradation and decontamination[J]. Current Organic Chemistry, 2007, 11(3): 285-298. doi: 10.2174/138527207779940892
[14] MUNRO N B, TALMAGE S S, GRIFFIN G D, et al. The sources, fate, and toxicity of chemical warfare agent degradation products[J]. Environmental Health Perspectives, 1999, 107(12): 933-974. doi: 10.1289/ehp.99107933
[15] POPIEL S, SANKOWSKA M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography[J]. Journal of Chromatography A, 2011, 1218(47): 8457-8479. doi: 10.1016/j.chroma.2011.09.066
[16] BARRECA D, MACCATO C, GASPAROTTO A. Metal oxide nanosystems As chemoresistive gas sensors for chemical warfare agents: A focused review[J]. Advanced Materials Interfaces, 2022, 9(14): 2102525. doi: 10.1002/admi.202102525
[17] KUMAR V. Chromo-fluorogenic sensors for chemical warfare agents in real-time analysis: journey towards accurate detection and differentiation[J]. Chemical Communications, 2021, 57(28): 3430-3444. DOI: 10.1039/d1cc00132a
[18] 高寒, 董艳春, 周术元. 化学战剂热催化分解研究进展[J]. 环境化学, 2019, 38(4): 950-956. doi: 10.7524/j.issn.0254-6108.2018052901 GAO H, DONG Y C, ZHOU S Y. Research progress on the thermocatalytic decomposition of chemical warfare agents[J]. Environmental Chemistry, 2019, 38(4): 950-956 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018052901
[19] AGRAWAL M, SAVA GALLIS D F, GREATHOUSE J A, et al. How useful are common simulants of chemical warfare agents at predicting adsorption behavior?[J]. The Journal of Physical Chemistry C, 2018, 122(45): 26061-26069. doi: 10.1021/acs.jpcc.8b08856
[20] PLONKA A M, WANG Q, GORDON W O, et al. In situ probes of capture and decomposition of chemical warfare agent simulants by Zr-based metal organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(2): 599-602. doi: 10.1021/jacs.6b11373
[21] WANG G, SHARP C, PLONKA A M, et al. Mechanism and kinetics for reaction of the chemical warfare agent simulant, DMMP(g), with zirconium(IV) MOFs: An ultrahigh-vacuum and DFT study[J]. The Journal of Physical Chemistry C, 2017, 121(21): 11261-11272. doi: 10.1021/acs.jpcc.7b00070
[22] MENDONCA M L, SNURR R Q. Screening for improved nerve agent simulants and insights into organophosphate hydrolysis reactions from DFT and QSAR modeling[J]. Chemistry, 2019, 25(39): 9217-9229. doi: 10.1002/chem.201900655
[23] BARTELT-HUNT S L, KNAPPE D R U, BARLAZ M A. A review of chemical warfare agent simulants for the study of environmental behavior[J]. Critical Reviews in Environmental Science and Technology, 2008, 38(2): 112-136. doi: 10.1080/10643380701643650
[24] GRABKA M, WITKIEWICZ Z, JASEK K, et al. Acoustic wave sensors for detection of blister chemical warfare agents and their simulants[J]. Sensors, 2022, 22(15): 5607. doi: 10.3390/s22155607
[25] 邹春阳, 王博伟, 闫雪晴, 等. 石英晶体微天平(QCM)应用的研究进展[J]. 浙江农林大学学报, 2020, 37(5): 1006-1013. ZOU C Y, WANG B W, YAN X Q, et al. Application and development of quartz crystal microbalance(QCM)[J]. Journal of Zhejiang A & F University, 2020, 37(5): 1006-1013 (in Chinese).
[26] 张璐, 庞林江, 陆国权, 等. QCM传感器的应用研究进展[J]. 传感器与微系统, 2023, 42(4): 5-9. ZHANG L, PANG L J, LU G Q, et al. Application research progress of QCM sensor[J]. Transducer and Microsystem Technologies, 2023, 42(4): 5-9 (in Chinese).
[27] 张秀明, 贺晓蕊, 林青, 等. 石英晶体微天平在内分泌干扰物检测中的应用[J]. 环境化学, 2010, 29(5): 810-813. ZHANG X M, HE X R, LIN Q, et al. Qaurtz crystal microbalance for the determination of endocrine disrupters[J]. Environmental Chemistry, 2010, 29(5): 810-813 (in Chinese).
[28] CHEN D Q, ZHANG K H, ZHOU H, et al. A wireless-electrodeless quartz crystal microbalance with dissipation DMMP sensor[J]. Sensors and Actuators B:Chemical, 2018, 261: 408-417. doi: 10.1016/j.snb.2018.01.105
[29] LEE Y J, KIM J G, KIM J H, et al. Detection of dimethyl methylphosphonate (DMMP) using polyhedral oligomeric silsesquioxane (POSS)[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(9): 6565-6569. doi: 10.1166/jnn.2018.15698
[30] LIN X H, AIK S X L, ANGKASA J, et al. Selective and sensitive sensors based on molecularly imprinted poly(vinylidene fluoride) for determination of pesticides and chemical threat agent simulants[J]. Sensors and Actuators B:Chemical, 2018, 258: 228-237. doi: 10.1016/j.snb.2017.11.070
[31] PARK J H, SONG S G, SHIN M H, et al. N-triflyl phosphoric triamide: A high-performance purely organic trifurcate quartz crystal microbalance sensor for chemical warfare agent[J]. ACS Sensors, 2022, 7(2): 423-429. doi: 10.1021/acssensors.1c02715
[32] LAMA S, KIM J, RAMESH S, et al. Highly sensitive hybrid nanostructures for dimethyl methyl phosphonate detection[J]. Micromachines, 2021, 12(6): 648. doi: 10.3390/mi12060648
[33] LAMA S, SUBEDI S, RAMESH S, et al. Synthesis and characterization of MnO2@Cellulose and polypyrrole-decorated MnO2@Cellulose for the detection of chemical warfare agent simulant[J]. Materials, 2022, 15(20): 7313. doi: 10.3390/ma15207313
[34] 潘小山, 刘芮彤, 王琴, 等. 声表面波传感器的原理及应用综述[J]. 传感器与微系统, 2018, 37(4): 1-4. PAN X S, LIU R T, WANG Q, et al. Review of principle and application of surface acoustic wave sensors[J]. Transducer and Microsystem Technologies, 2018, 37(4): 1-4 (in Chinese).
[35] 何世堂, 王文, 谢晓, 等. 声表面波气体传感器研究进展[J]. 真空电子技术, 2013(2): 9-13. HE S T, WANG W, XIE X, et al. Advances in SAW gas sensors[J]. Vacuum Electronics, 2013(2): 9-13 (in Chinese).
[36] PAN Y, MU N, LIU B, et al. A novel surface acoustic wave sensor array based on wireless communication network[J]. Sensors, 2018, 18(9): 2977. doi: 10.3390/s18092977
[37] PAN Y, ZHANG L, CAO B Q, et al. Effects of temperature and humidity on the performance of a PECH polymer coated SAW sensor[J]. RSC Advances, 2020, 10(31): 18099-18106. doi: 10.1039/D0RA02502J
[38] PAN Y, WANG P H, ZHANG G W, et al. Development of a SAW poly(epichlorohydrin) gas sensor for detection of harmful chemicals[J]. Analytical Methods:Advancing Methods and Applications, 2022, 14(16): 1611-1622.
[39] KIM E, KIM J, HA S, et al. Improved performance of surface acoustic wave sensors by plasma treatments for chemical warfare agents monitoring[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 7145-7150. doi: 10.1166/jnn.2020.18850
[40] KIM J, PARK H, KIM J, et al. SAW chemical array device coated with polymeric sensing materials for the detection of nerve agents[J]. Sensors, 2020, 20(24): 7028. doi: 10.3390/s20247028
[41] KAUR M, GABA J, SINGH K, et al. Recent advances in recognition receptors for electrochemical biosensing of mycotoxins-a review[J]. Biosensors, 2023, 13(3): 391. doi: 10.3390/bios13030391
[42] MISHRA R K, MARTÍN A, NAKAGAWA T, et al. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems[J]. Biosensors and Bioelectronics, 2018, 101: 227-234. doi: 10.1016/j.bios.2017.10.044
[43] MISHRA R K, BARFIDOKHT A, KARAJIC A, et al. Wearable potentiometric tattoo biosensor for on-body detection of G-type nerve agents simulants[J]. Sensors and Actuators B:Chemical, 2018, 273: 966-972. doi: 10.1016/j.snb.2018.07.001
[44] GOUD K Y, SANDHU S S, TEYMOURIAN H, et al. Textile-based wearable solid-contact flexible fluoride sensor: Toward biodetection of G-type nerve agents[J]. Biosensors & Bioelectronics, 2021, 182: 113172.
[45] SAITO M, UCHIDA N, FURUTANI S, et al. Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents[J]. Microsystems & Nanoengineering, 2018, 4: 17083.
[46] YOO J, KIM D, YANG H, et al. Olfactory receptor-based CNT-FET sensor for the detection of DMMP as a simulant of sarin[J]. Sensors and Actuators B:Chemical, 2022, 354: 131188. doi: 10.1016/j.snb.2021.131188
[47] 吴昊, 孙旭飞, 张蕴哲, 等. 基于荧光传感器检测食品中赭曲霉毒素A的研究进展[J]. 食品安全质量检测学报, 2022, 13(1): 1-9. WU H, SUN X F, ZHANG Y Z, et al. Research progress of detection of ochratoxin A in food based on fluorescence sensor[J]. Journal of Food Safety & Quality, 2022, 13(1): 1-9 (in Chinese).
[48] KHAN M S J, WANG Y W, SENGE M O, et al. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic[J]. Journal of Hazardous Materials, 2018, 342: 10-19. doi: 10.1016/j.jhazmat.2017.08.009
[49] HUO B L, DU M, SHEN A, et al. Covalent-assembly-based fluorescent probe for detection of a nerve-agent mimic (DCP) via lossen rearrangement[J]. Analytical Chemistry, 2019, 91(17): 10979-10983. doi: 10.1021/acs.analchem.9b01006
[50] LI S S, ZHENG Y C, ZHU X M, et al. A novel BODIPY-based fluorescent probe for sensitive and selective detection of nerve agent simulants through base-assisted photo-induced electron transfer process[J]. Sensors and Actuators B:Chemical, 2021, 337: 129804. doi: 10.1016/j.snb.2021.129804
[51] LIU K, QIN M L, SHI Q Y, et al. Fast and selective detection of trace chemical warfare agents enabled by an ESIPT-based fluorescent film sensor[J]. Analytical Chemistry, 2022, 94(32): 11151-11158. doi: 10.1021/acs.analchem.2c00862
[52] SARKAR H S, GHOSH A, DAS S, et al. Visualisation of DCP, a nerve agent mimic, in Catfish brain by a simple chemosensor[J]. Scientific Reports, 2018, 8: 3402. doi: 10.1038/s41598-018-21780-5
[53] WANG H, GUAN J P, HAN X, et al. Benzothiazole modified rhodol as chemodosimeter for the detection of sulfur mustard simulant[J]. Talanta, 2018, 189: 39-44. doi: 10.1016/j.talanta.2018.06.066
[54] CHEN L Y, OH H, WU D, et al. An ESIPT fluorescent probe and a nanofiber platform for selective and sensitive detection of a nerve gas mimic[J]. Chemical Communications, 2018, 54(18): 2276-2279. doi: 10.1039/C7CC09901K
[55] KUMAR V, RANA H, RAVIRAJU G, et al. Chemodosimeter for selective and sensitive chromogenic and fluorogenic detection of mustard gas for real time analysis[J]. Analytical Chemistry, 2018, 90(2): 1417-1422. doi: 10.1021/acs.analchem.7b04882
[56] ZHANG Y L, LV Y L, WANG X F, et al. A turn-on fluorescent probe for detection of sub-ppm levels of a sulfur mustard simulant with high selectivity[J]. Analytical Chemistry, 2018, 90(8): 5481-5488. doi: 10.1021/acs.analchem.8b01057
[57] ZHONG L, LI H, WANG S L, et al. The sensing property of charge-transfer chemosensors tuned by acceptors for colorimetric and fluorometric detection of CN/HCN in solutions and in gas phase[J]. Sensors and Actuators B:Chemical, 2018, 266: 703-709. doi: 10.1016/j.snb.2018.03.025
[58] QIN T Y, HUANG Y Y, ZHU K N, et al. A flavonoid-based fluorescent test strip for sensitive and selective detection of a gaseous nerve agent simulant[J]. Analytica Chimica Acta, 2019, 1076: 125-130. doi: 10.1016/j.aca.2019.05.025
[59] HEO G, MANIVANNAN R, KIM H, et al. Liquid and gaseous state visual detection of chemical warfare agent mimic DCP by optical sensor[J]. Dyes and Pigments, 2019, 171: 107712. doi: 10.1016/j.dyepig.2019.107712
[60] JIANG Y L, BROOME A M. Novel Pyrene excimer and fluorogenic probe for the detection of alkylating agents[J]. ACS Sensors, 2019, 4(7): 1791-1797. doi: 10.1021/acssensors.9b00274
[61] ZENG L T, ZENG H Y, JIANG L R, et al. A single fluorescent chemosensor for simultaneous discriminative detection of gaseous phosgene and a nerve agent mimic[J]. Analytical Chemistry, 2019, 91(18): 12070-12076. doi: 10.1021/acs.analchem.9b03230
[62] QIANG L, ZHANG Y, GUO X, et al. A rapid and ultrasensitive colorimetric biosensor based on aptamer functionalized Au nanoparticles for detection of saxitoxin[J]. RSC Advances, 2020, 10(26): 15293-15298. doi: 10.1039/D0RA01231A
[63] LI D X, XI H L, HAN S T, et al. A turn-on fluorescent probe based on N-(rhodamine-B)-thiolactam-2- n-butane with ionic liquids for selective and sensitive detection of mustard gas stimulant[J]. Analytical Methods:Advancing Methods and Applications, 2021, 13(4): 484-490.
[64] ZHANG Y M, MU H B, ZHENG P, et al. Highly efficient nerve agents fluorescent film probe based on organic/inorganic hybrid silica nanoparticles[J]. Sensors and Actuators B:Chemical, 2021, 343: 130140. doi: 10.1016/j.snb.2021.130140
[65] JUN J, LEE J S, SHIN D H, et al. Fabrication of a one-dimensional tube-in-tube polypyrrole/tin oxide structure for highly sensitive DMMP sensor applications[J]. Journal of Materials Chemistry A, 2017, 5(33): 17335-17340. doi: 10.1039/C7TA02725G
[66] LEE J H, JUNG H, YOO R, et al. Real-time selective detection of 2-chloroethyl ethyl sulfide (2-CEES) using an Al-doped ZnO quantum dot sensor coupled with a packed column for gas chromatography[J]. Sensors and Actuators B:Chemical, 2019, 284: 444-450. doi: 10.1016/j.snb.2018.12.144
[67] BIGIANI L, ZAPPA D, BARRECA D, et al. Sensing nitrogen mustard gas simulant at the ppb scale via selective dual-site activation at Au/Mn3O4 interfaces[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23692-23700.
[68] BARRECA D, GASPAROTTO A, GRI F, et al. Plasma-assisted growth of β-MnO2 nanosystems as gas sensors for safety and food industry applications[J]. Advanced Materials Interfaces, 2018, 5(23): 1800792. doi: 10.1002/admi.201800792
[69] ALZATE-CARVAJAL N, PARK J, PYKAL M, et al. Graphene field effect transistors: A sensitive platform for detecting sarin[J]. ACS Applied Materials & Interfaces, 2021, 13(51): 61751-61757.
[70] ALALI K T, LIU J Y, MOHARRAM D, et al. HFIP-functionalized 3D carbon nanostructure as chemiresistive nerve agents sensors under visible light[J]. Sensors and Actuators B:Chemical, 2022, 358: 131475. doi: 10.1016/j.snb.2022.131475