[1] |
SHEN M C, SONG B, ZENG G M, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution?[J]. Environmental Pollution, 2020, 263: 114469. doi: 10.1016/j.envpol.2020.114469
|
[2] |
BHAGWAT G, CARBERY M, ANH TRAN T K, et al. Fingerprinting plastic-associated inorganic and organic matter on plastic aged in the marine environment for a decade[J]. Environmental Science & Technology, 2021, 55(11): 7407-7417.
|
[3] |
WANG Y H, YANG Y N, LIU X, et al. Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption, and toxicity[J]. Environmental Science & Technology, 2021, 55(23): 15579-15595.
|
[4] |
LIU R H, WANG Y H, YANG Y N, et al. New insights into adsorption mechanism of pristine and weathered polyamide microplastics towards hydrophilic organic compounds[J]. Environmental Pollution, 2023, 317: 120818. doi: 10.1016/j.envpol.2022.120818
|
[5] |
BI D, WANG B B, LI Z, et al. Occurrence and distribution of microplastics in coastal plain soils under three land-use types[J]. Science of the Total Environment, 2023, 855: 159023. doi: 10.1016/j.scitotenv.2022.159023
|
[6] |
LIM B K H, THIAN E S. Biodegradation of polymers in managing plastic waste—a review[J]. Science of the Total Environment, 2022, 813: 151880. doi: 10.1016/j.scitotenv.2021.151880
|
[7] |
QIN Q Y, YANG Y D, YANG C F, et al. Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions[J]. Science of the Total Environment, 2022, 842: 156775. doi: 10.1016/j.scitotenv.2022.156775
|
[8] |
SHRUTI V C, KUTRALAM-MUNIASAMY G. Bioplastics: Missing link in the era of Microplastics[J]. Science of the Total Environment, 2019, 697: 134139. doi: 10.1016/j.scitotenv.2019.134139
|
[9] |
TORRES F G, DIOSES-SALINAS D C, PIZARRO-ORTEGA C I, et al. Sorption of chemical contaminants on degradable and non-degradable microplastics: Recent progress and research trends[J]. Science of the Total Environment, 2021, 757: 143875. doi: 10.1016/j.scitotenv.2020.143875
|
[10] |
ZHANG X L, XIA M L, SU X J, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. doi: 10.1016/j.jhazmat.2021.125321
|
[11] |
张宏博, 刘焦萍, 赵苏杭, 等. 生物可降解塑料发展现状及展望[J]. 现代化工, 2023, 43(4): 9-12,17.
ZHANG H B, LIU J P, ZHAO S H, et al. Development status and prospect of biodegradable plastics[J]. Modern Chemical Industry, 2023, 43(4): 9-12,17 (in Chinese).
|
[12] |
俞学如, 陈森, 梁思嘉, 等. 可降解塑料的使用现状及其潜在环境风险[J]. 环境化学, 2023, 42(1): 29-40. doi: 10.7524/j.issn.0254-6108.2022101308
YU X R, CHEN S, LIANG S J, et al. Current use of biodegradable plastics and their potential environmental risks[J]. Environmental Chemistry, 2023, 42(1): 29-40 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022101308
|
[13] |
GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208: 426-434. doi: 10.1016/j.envpol.2015.10.010
|
[14] |
谢鸿洲, 卢文新, 商宽祥. 几种可生物降解塑料的性能与应用比较研究[J]. 化肥设计, 2020, 58(4): 1-3,7.
XIE H Z, LU W X, SHANG K X. Comparative study on the properties and application of several biodegradable plastics[J]. Chemical Fertilizer Design, 2020, 58(4): 1-3,7 (in Chinese).
|
[15] |
WONGPHAN P, NAMPANYA P, CHAKPHA W, et al. Lesser galangal (Alpinia officinarum Hance) essential oil incorporated biodegradable PLA/PBS films as shelf-life extension packaging of cooked rice[J]. Food Packaging and Shelf Life, 2023, 37: 101077. doi: 10.1016/j.fpsl.2023.101077
|
[16] |
AINALI N M, KALARONIS D, EVGENIDOU E, et al. Do poly(lactic acid) microplastics instigate a threat? A perception for their dynamic towards environmental pollution and toxicity[J]. The Science of the Total Environment, 2022, 832: 155014. doi: 10.1016/j.scitotenv.2022.155014
|
[17] |
TRIVEDI A K, GUPTA M K, SINGH H. PLA based biocomposites for sustainable products: A review[J]. Advanced Industrial and Engineering Polymer Research, 2023
|
[18] |
BALART J F, FOMBUENA V, FENOLLAR O, et al. Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO)[J]. Composites Part B:Engineering, 2016, 86: 168-177. doi: 10.1016/j.compositesb.2015.09.063
|
[19] |
SWETHA T A, BORA A, MOHANRASU K, et al. A comprehensive review on polylactic acid (PLA) - Synthesis, processing and application in food packaging[J]. International Journal of Biological Macromolecules, 2023, 234: 123715. doi: 10.1016/j.ijbiomac.2023.123715
|
[20] |
MEHMOOD A, RAINA N, PHAKEENUYA V, et al. The current status and market trend of polylactic acid as biopolymer: Awareness and needs for sustainable development[J]. Materials Today:Proceedings, 2023, 72: 3049-3055. doi: 10.1016/j.matpr.2022.08.387
|
[21] |
ANDRADE M A, BARBOSA C H, CERQUEIRA M A, et al. PLA films loaded with green tea and rosemary polyphenolic extracts as an active packaging for almond and beef[J]. Food Packaging and Shelf Life, 2023, 36: 101041. doi: 10.1016/j.fpsl.2023.101041
|
[22] |
CHRYSAFI I, PAVLIDOU E, CHRISTODOULOU E, et al. Effects of poly(hexylene succinate) amount on the crystallization and molecular mobility of poly(lactic acid) copolymers[J]. Thermochimica Acta, 2021, 698: 178883. doi: 10.1016/j.tca.2021.178883
|
[23] |
高小山. 环保型纺织新材料: 聚乳酸纤维[J]. 新材料产业, 2011(4): 65-67. doi: 10.3969/j.issn.1008-892X.2011.04.016
GAO X S. A new textile material of environmental protection—Polylactic acid fiber[J]. Advanced Materials Industry, 2011(4): 65-67 (in Chinese). doi: 10.3969/j.issn.1008-892X.2011.04.016
|
[24] |
SINTIM H Y, BARY A I, HAYES D G, et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting[J]. Science of the Total Environment, 2019, 675: 686-693. doi: 10.1016/j.scitotenv.2019.04.179
|
[25] |
WEI X F, BOHLÉN M, LINDBLAD C, et al. Microplastics generated from a biodegradable plastic in freshwater and seawater[J]. Water Research, 2021, 198: 117123. doi: 10.1016/j.watres.2021.117123
|
[26] |
FADARE O O, WAN B, GUO L H, et al. Microplastics from consumer plastic food containers: Are we consuming it?[J]. Chemosphere, 2020, 253: 126787. doi: 10.1016/j.chemosphere.2020.126787
|
[27] |
LIU G Q, WANG J, WANG M J, et al. Disposable plastic materials release microplastics and harmful substances in hot water[J]. Science of the Total Environment, 2022, 818: 151685. doi: 10.1016/j.scitotenv.2021.151685
|
[28] |
TONG H Y, ZHONG X C, DUAN Z H, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity[J]. Science of the Total Environment, 2022, 833: 155275. doi: 10.1016/j.scitotenv.2022.155275
|
[29] |
JEM K J, TAN B W. The development and challenges of poly (lactic acid) and poly (glycolic acid)[J]. Advanced Industrial and Engineering Polymer Research, 2020, 3(2): 60-70. doi: 10.1016/j.aiepr.2020.01.002
|
[30] |
BAO R Q, PU J R, XIE C L, et al. Aging of biodegradable blended plastic generates microplastics and attached bacterial communities in air and aqueous environments[J]. Journal of Hazardous Materials, 2022, 434: 128891. doi: 10.1016/j.jhazmat.2022.128891
|
[31] |
WEI X F, NILSSON F, YIN H Y, et al. Microplastics originating from polymer blends: An emerging threat?[J]. Environmental Science & Technology, 2021, 55(8): 4190-4193.
|
[32] |
LIU X M, AHMAD S, MA J K, et al. Comparative study on the toxic effects of secondary nanoplastics from biodegradable and conventional plastics on Streptomyces coelicolor M145[J]. Journal of Hazardous Materials, 2023, 460: 132343. doi: 10.1016/j.jhazmat.2023.132343
|