[1] |
WANG Q, LI X N, YANG Q X, et al. Evolution of microbial community and drug resistance during enrichment of tetracycline-degrading bacteria[J]. Ecotoxicology and Environmental Safety, 2019, 171: 746-752. doi: 10.1016/j.ecoenv.2019.01.047
|
[2] |
SINGH R, SINGH A P, KUMAR S, et al. Antibiotic resistance in major rivers in the world: A systematic review on occurrence, emergence, and management strategies[J]. Journal of Cleaner Production, 2019, 234: 1484-1505. doi: 10.1016/j.jclepro.2019.06.243
|
[3] |
JI L L, LIU F L, XU Z Y, et al. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons[J]. Environmental Science & Technology, 2010, 44(8): 3116-3122.
|
[4] |
GUO J L, HUANG M H, GAO P, et al. Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane[J]. Chemical Engineering Journal, 2020, 398: 125604. doi: 10.1016/j.cej.2020.125604
|
[5] |
NIE Y, ZHAO C W, ZHOU Z Y, et al. Hydrochloric acid-modified fungi-microalgae biochar for adsorption of tetracycline hydrochloride: Performance and mechanism[J]. Bioresource Technology, 2023, 383: 129224. doi: 10.1016/j.biortech.2023.129224
|
[6] |
SHI Q Y, WANG W B, ZHANG H M, et al. Porous biochar derived from walnut shell as an efficient adsorbent for tetracycline removal[J]. Bioresource Technology, 2023, 383: 129213. doi: 10.1016/j.biortech.2023.129213
|
[7] |
PHOON B L, ONG C C, MOHAMED SAHEED M S, et al. Conventional and emerging technologies for removal of antibiotics from wastewater[J]. Journal of Hazardous Materials, 2020, 400: 122961. doi: 10.1016/j.jhazmat.2020.122961
|
[8] |
SCARIA J, ANUPAMA K V, NIDHEESH P V. Tetracyclines in the environment: An overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management[J]. Science of the Total Environment, 2021, 771: 145291. doi: 10.1016/j.scitotenv.2021.145291
|
[9] |
PRIYA S S, RADHA K V. A review on the adsorption studies of tetracycline onto various types of adsorbents[J]. Chemical Engineering Communications, 2017, 204(8): 821-839. doi: 10.1080/00986445.2015.1065820
|
[10] |
陈刚, 朱赫特, 陈浩然, 等. 镁改性水生植物生物炭吸附水中的微囊藻毒素-LR[J]. 环境化学, 2024, 43(1): 250-263. doi: 10.7524/j.issn.0254-6108.2022061602
CHEN G, ZHU H T, CHEN H R, et al. Adsorption of microcystin-LR by Mg-modified aquatic plant biochar in water[J]. Environmental Chemistry, 2024, 43(1): 250-263 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022061602
|
[11] |
LU S Y, HUANG X L, TANG M H, et al. Synthesis of N-doped hierarchical porous carbon with excellent toluene adsorption properties and its activation mechanism[J]. Environmental Pollution, 2021, 284: 117113. doi: 10.1016/j.envpol.2021.117113
|
[12] |
LI H X, TANG M H, HUANG X L, et al. An efficient biochar adsorbent for CO2 capture: Combined experimental and theoretical study on the promotion mechanism of N-doping[J]. Chemical Engineering Journal, 2023, 466: 143095. doi: 10.1016/j.cej.2023.143095
|
[13] |
CHEN X, OH W D, HU Z T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B:Environmental, 2018, 225: 243-257. doi: 10.1016/j.apcatb.2017.11.071
|
[14] |
CHENG Y Z, WANG B Y, SHEN J M, et al. Preparation of novel N-doped biochar and its high adsorption capacity for atrazine based on π-π electron donor-acceptor interaction[J]. Journal of Hazardous Materials, 2022, 432: 128757. doi: 10.1016/j.jhazmat.2022.128757
|
[15] |
ZHAO J, DAI Y. Tetracycline adsorption mechanisms by NaOH-modified biochar derived from waste Auricularia auricula dregs [J]. Environmental Science and Pollution Research, 2022, 29(6): 9142-9152. doi: 10.1007/s11356-021-16329-5
|
[16] |
LIU H D, XU G R, LI G B. Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline[J]. Journal of Colloid and Interface Science, 2021, 587: 271-278. doi: 10.1016/j.jcis.2020.12.014
|
[17] |
XIANG W, WAN Y S, ZHANG X Y, et al. Adsorption of tetracycline hydrochloride onto ball-milled biochar: Governing factors and mechanisms[J]. Chemosphere, 2020, 255: 127057. doi: 10.1016/j.chemosphere.2020.127057
|
[18] |
TANG M H, DENG J, LI M M, et al. 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation[J]. Green Chemistry, 2016, 18(22): 6082-6090. doi: 10.1039/C6GC01858K
|
[19] |
SHENG Z H, SHAO L, CHEN J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6): 4350-4358. doi: 10.1021/nn103584t
|
[20] |
张婷. 基于废白土的凹凸棒土—炭复合材料的制备及其对重金属和抗生素污染吸附研究[D]. 西安: 西北大学, 2022.
ZHANG T. Preparation of attapulgite-carbon composite based on spent bleaching earth and its adsorption effects on heavy metals and antibiotics[D]. Xi'an: Northwest University, 2022 (in Chinese).
|
[21] |
DING C F, LIU T Y, YAN X D, et al. An ultra-microporous carbon material boosting integrated capacitance for cellulose-based supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 63. doi: 10.1007/s40820-020-0393-7
|
[22] |
GUO B B, MA R G, LI Z C, et al. Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors[J]. Nano-Micro Letters, 2020, 12(1): 20. doi: 10.1007/s40820-019-0364-z
|
[23] |
TANG M H, HUANG X L, PENG Y Q, et al. Hierarchical porous carbon as a highly efficient adsorbent for toluene and benzene[J]. Fuel, 2020, 270: 117478. doi: 10.1016/j.fuel.2020.117478
|
[24] |
CHEN W H, DU J T, LEE K T, et al. Pore volume upgrade of biochar from spent coffee grounds by sodium bicarbonate during torrefaction[J]. Chemosphere, 2021, 275: 129999. doi: 10.1016/j.chemosphere.2021.129999
|
[25] |
张宏, 贺丹丹, 王九玲, 等. Fe/Zn改性市政污泥生物质炭对四环素的吸附性能研究[J]. 功能材料, 2022, 53(10): 10137-10145,10156.
ZHANG H, HE D D, WANG J L, et al. Adsorption capacity of Fe/Zn modified municipal sludge biochar for tetracycline[J]. Journal of Functional Materials, 2022, 53(10): 10137-10145,10156 (in Chinese).
|
[26] |
NANDI B K, GOSWAMI A, PURKAIT M K. Adsorption characteristics of brilliant green dye on Kaolin[J]. Journal of Hazardous Materials, 2009, 161(1): 387-395. doi: 10.1016/j.jhazmat.2008.03.110
|
[27] |
林冰峰, 陈志豪, 杨芳俐, 等. 锰铁氧体改性生物炭对四环素的吸附性能研究[J]. 农业环境科学学报, 2023, 42(7): 1585-1596. doi: 10.11654/jaes.2022-1222
LIN B F, CHEN Z H, YANG F L, et al. Adsorption performance of tetracycline by manganese ferrite-modified biochar[J]. Journal of Agro-Environment Science, 2023, 42(7): 1585-1596 (in Chinese). doi: 10.11654/jaes.2022-1222
|
[28] |
FOROUTAN R, PEIGHAMBARDOUST S J, LATIFI P, et al. Carbon nanotubes/β-cyclodextrin/MnFe2O4 as a magnetic nanocomposite powder for tetracycline antibiotic decontamination from different aqueous environments[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106344. doi: 10.1016/j.jece.2021.106344
|
[29] |
DAIFULLAH A A M, GIRGIS B S, GAD H M H. A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2004, 235(1/2/3): 1-10.
|
[30] |
吴晨曦. 改性生物炭对水中有机物的吸附效能与机理研究[D]. 西安: 西安建筑科技大学, 2022.
WU C X. Study on the efficiency and mechanism of modified biochar in adsorbing organic matter in water[D]. Xi'an: Xi'an University of Architecture and Technology, 2022 (in Chinese).
|
[31] |
TANG Y, CHEN Q M, LI W Q, et al. Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability[J]. Journal of Hazardous Materials, 2020, 388: 122059. doi: 10.1016/j.jhazmat.2020.122059
|
[32] |
TRAN H N, YOU S J, HOSSEINI-BANDEGHARAEI A, et al. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review[J]. Water Research, 2017, 120: 88-116. doi: 10.1016/j.watres.2017.04.014
|
[33] |
EL-KHAIARY M I, MALASH G F. Common data analysis errors in batch adsorption studies[J]. Hydrometallurgy, 2011, 105(3/4): 314-320.
|
[34] |
LIU W F, ZHANG J, ZHANG C L, et al. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics[J]. Chemical Engineering Journal, 2011, 171(2): 431-438. doi: 10.1016/j.cej.2011.03.099
|
[35] |
CARABINEIRO S A C, THAVORN-AMORNSRI T, PEREIRA M F R, et al. Adsorption of ciprofloxacin on surface-modified carbon materials[J]. Water Research, 2011, 45(15): 4583-4591. doi: 10.1016/j.watres.2011.06.008
|
[36] |
赵涛. 不同生物炭对水中磺胺类抗生素的吸附及机理研究[D]. 广州: 华南农业大学, 2016.
ZHAO T. Absorption characteristics and mechanisms of sulfonamides in aquatic solutions by biochars derived from different biomass materials[D]. Guangzhou: South China Agricultural University, 2016 (in Chinese).
|
[37] |
TRAN H N, YOU S J, CHAO H P. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 2671-2682. doi: 10.1016/j.jece.2016.05.009
|
[38] |
LI Y C, XING B, WANG X L, et al. Nitrogen-doped hierarchical porous biochar derived from corn stalks for phenol-enhanced adsorption[J]. Energy & Fuels, 2019, 33(12): 12459-12468.
|
[39] |
WAN Y, HU Y, ZHOU W J. Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: The crucial roles of nitrogen incorporation and carbon configuration[J]. The Science of the Total Environment, 2022, 816: 151502. doi: 10.1016/j.scitotenv.2021.151502
|
[40] |
FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. doi: 10.1038/nnano.2013.46
|
[41] |
WANG H Z, GUO W Q, LIU B H, et al. Edge-nitrogenated biochar for efficient peroxydisulfate activation: An electron transfer mechanism[J]. Water Research, 2019, 160: 405-414. doi: 10.1016/j.watres.2019.05.059
|
[42] |
CHE H X, WEI G T, FAN Z D, et al. Super facile one-step synthesis of sugarcane bagasse derived N-doped porous biochar for adsorption of ciprofloxacin[J]. Journal of Environmental Management, 2023, 335: 117566. doi: 10.1016/j.jenvman.2023.117566
|
[43] |
MEI Y L, XU J, ZHANG Y, et al. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution[J]. Bioresource Technology, 2021, 325: 124732. doi: 10.1016/j.biortech.2021.124732
|
[44] |
CAMINATI G, FOCARDI C, GABRIELLI G, et al. Spectroscopic investigation of tetracycline interaction with phospholipid Langmuir-Blodgett films[J]. Materials Science and Engineering: C, 2002, 22(2): 301-305. doi: 10.1016/S0928-4931(02)00217-5
|
[45] |
ZHANG H K, SONG X, ZHANG J, et al. Performance and mechanism of sycamore flock based biochar in removing oxytetracycline hydrochloride[J]. Bioresource Technology, 2022, 350: 126884. doi: 10.1016/j.biortech.2022.126884
|
[46] |
GUO D H, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. doi: 10.1126/science.aad0832
|
[47] |
WEI M M, MARRAKCHI F, YUAN C, et al. Adsorption modeling, thermodynamics, and DFT simulation of tetracycline onto mesoporous and high-surface-area NaOH-activated macroalgae carbon[J]. Journal of Hazardous Materials, 2022, 425: 127887. doi: 10.1016/j.jhazmat.2021.127887
|
[48] |
WANG S, YUAN C, ZAFAR F F, et al. Facile synthesis of chlorella-derived autogenous N-doped porous biochar for adsorption on tetracycline[J]. Environmental Pollution, 2023, 330: 121717. doi: 10.1016/j.envpol.2023.121717
|