[1] |
LIAO W Q, ZHAO M H, RONG H W, et al. Photocatalyst immobilized by hydrogel, efficient degradation and self regeneration: A review[J]. Materials Science in Semiconductor Processing, 2022, 150: 106929. doi: 10.1016/j.mssp.2022.106929
|
[2] |
KANAKARAJU D, ANAK KUTIANG F D, LIM Y C, et al. Recent progress of Ag/TiO2 photocatalyst for wastewater treatment: Doping, co-doping, and green materials functionalization[J]. Applied Materials Today, 2022, 27: 101500. doi: 10.1016/j.apmt.2022.101500
|
[3] |
BARANOWSKA-WÓJCIK E, SZWAJGIER D, OLESZCZUK P, et al. Effects of titanium dioxide nanoparticles exposure on human health—A review[J]. Biological Trace Element Research, 2020, 193(1): 118-129. doi: 10.1007/s12011-019-01706-6
|
[4] |
KUMAR N, CHAUHAN N S, MITTAL A, et al. TiO2 and its composites as promising biomaterials: A review[J]. BioMetals, 2018, 31(2): 147-159. doi: 10.1007/s10534-018-0078-6
|
[5] |
HUANG D J, WANG W B, WANG A Q. Removal of Cu2+ and Zn2+ ions from aqueous solution using sodium alginate and attapulgite composite hydrogels[J]. Adsorption Science & Technology, 2013, 31(7): 611-623.
|
[6] |
SABAA M W, ALI A M, SOLIMAN S M A. Physical hydrogel based on alginate and poly(2-hydroxyethyl methacrylate) for water treatment[J]. Desalination and Water Treatment, 2020, 174: 152-160. doi: 10.5004/dwt.2020.24841
|
[7] |
NUR A S M, SULTANA M, MONDAL A, et al. A review on the development of elemental and codoped TiO2 photocatalysts for enhanced dye degradation under UV-vis irradiation[J]. Journal of Water Process Engineering, 2022, 47: 102728. doi: 10.1016/j.jwpe.2022.102728
|
[8] |
ZHAO Y, LINGHU X Y, SHU Y, et al. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108077. doi: 10.1016/j.jece.2022.108077
|
[9] |
RACOVITA A D. Titanium dioxide: Structure, impact, and toxicity[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5681. doi: 10.3390/ijerph19095681
|
[10] |
WANG J Q, WANG Z H, WANG W, et al. Synthesis, modification and application of titanium dioxide nanoparticles: A review[J]. Nanoscale, 2022, 14(18): 6709-6734. doi: 10.1039/D1NR08349J
|
[11] |
ALHAJI M H, SANAULLAH K, KHAN A, et al. Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater- A review[J]. International Journal of Environmental Science and Technology, 2017, 14(9): 2039-2052. doi: 10.1007/s13762-017-1349-4
|
[12] |
KUVAREGA A T, MAMBA B B. TiO2-based photocatalysis: toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(4): 295-346. doi: 10.1080/10408436.2016.1211507
|
[13] |
LI PUMA G, BONO A, KRISHNAIAH D, et al. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition: A review paper[J]. Journal of Hazardous Materials, 2008, 157(2/3): 209-219.
|
[14] |
ZHU H J, LI Z K, YANG J H. A novel composite hydrogel for adsorption and photocatalytic degradation of bisphenol A by visible light irradiation[J]. Chemical Engineering Journal, 2018, 334: 1679-1690. doi: 10.1016/j.cej.2017.11.148
|
[15] |
ZHAO S, HOU C X, SHAO L R, et al. Adsorption and in situ photocatalytic synergy degradation of 2, 4-dichlorophenol by three-dimensional graphene hydrogel modified with highly dispersed TiO2 nanoparticles[J]. Applied Surface Science, 2022, 590: 153088. doi: 10.1016/j.apsusc.2022.153088
|
[16] |
RATSHIEDANA R, KUVAREGA A T, MISHRA A K. Titanium dioxide and graphitic carbon nitride-based nanocomposites and nanofibres for the degradation of organic pollutants in water: A review[J]. Environmental Science and Pollution Research International, 2021, 28(9): 10357-10374. doi: 10.1007/s11356-020-11987-3
|
[17] |
DRAGAN E S. Design and applications of interpenetrating polymer network hydrogels. A review[J]. Chemical Engineering Journal, 2014, 243: 572-590. doi: 10.1016/j.cej.2014.01.065
|
[18] |
BUWALDA S J, BOERE K W M, DIJKSTRA P J, et al. Hydrogels in a historical perspective: From simple networks to smart materials[J]. Journal of Controlled Release, 2014, 190: 254-273. doi: 10.1016/j.jconrel.2014.03.052
|
[19] |
ZHAO Y, SHI C, YANG X D, et al. pH- and temperature-sensitive hydrogel nanoparticles with dual photoluminescence for bioprobes[J]. ACS Nano, 2016, 10(6): 5856-5863. doi: 10.1021/acsnano.6b00770
|
[20] |
JU X J, ZHANG S B, ZHOU M Y, et al. Novel heavy-metal adsorption material: Ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 114-118.
|
[21] |
WU T M, SAWUT A, SIMAYI R, et al. Green synthesis and environmental applications of alginate/polyacrylamide/titanium dioxide composite hydrogel[J]. Journal of Applied Polymer Science, 2023, 140(37): e54394. doi: 10.1002/app.54394
|
[22] |
MOON Y E, JUNG G, YUN J M, et al. Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants[J]. Materials Science and Engineering:B, 2013, 178(17): 1097-1103. doi: 10.1016/j.mseb.2013.07.002
|