[1] |
WANG Z Y, DeWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
|
[2] |
SUNDERLAND E M, HU X C, DASSUNCAO C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2): 131-147.
|
[3] |
张美, 楼巧婷, 邵倩文, 等. 全氟化合物污染现状及风险评估的研究进展[J]. 生态毒理学报, 2019, 14(3): 30-53.
ZHANG M, LOU Q T, SHAO Q W, et al. Research progress of perfluorinated compounds pollution status and risk assessment[J]. Asian Journal of Ecotoxicology, 2019, 14(3): 30-53 (in Chinese).
|
[4] |
ZHANG Y F, BEESOON S, ZHU L Y, et al. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life[J]. Environmental Science & Technology, 2013, 47(18): 10619-10627.
|
[5] |
LI Y, FENG X M, ZHOU J, et al. Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River Basin in China using receptor models and isomeric fingerprints[J]. Water Research, 2020, 168: 115145. doi: 10.1016/j.watres.2019.115145
|
[6] |
XU Y Y, FLETCHER T, PINEDA D, et al. Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam[J]. Environmental Health Perspectives, 2020, 128(7): 77004. doi: 10.1289/EHP6785
|
[7] |
FENG X M, YI S J, SHAN G Q, et al. Occurrence of perfluoroalkyl substances in the environment compartments near a mega fluorochemical industry: Implication of specific behaviors and emission estimation[J]. Journal of Hazardous Materials, 2023, 445: 130473. doi: 10.1016/j.jhazmat.2022.130473
|
[8] |
SCHULZ K, SILVA M R, KLAPER R. Distribution and effects of branched versus linear isomers of PFOA, PFOS, and PFHxS: A review of recent literature[J]. The Science of the Total Environment, 2020, 733: 139186. doi: 10.1016/j.scitotenv.2020.139186
|
[9] |
LIU Z Y, LU Y L, SHI Y J, et al. Crop bioaccumulation and human exposure of perfluoroalkyl acids through multi-media transport from a mega fluorochemical industrial park, China[J]. Environment International, 2017, 106: 37-47. doi: 10.1016/j.envint.2017.05.014
|
[10] |
CHEN H, YAO Y M, ZHAO Z, et al. Multimedia distribution and transfer of per- and polyfluoroalkyl substances (PFASs) surrounding two fluorochemical manufacturing facilities in Fuxin, China[J]. Environmental Science & Technology, 2018, 52(15): 8263-8271.
|
[11] |
BAO J, YU W J, LIU Y, et al. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China[J]. Ecotoxicology and Environmental Safety, 2019, 171: 199-205. doi: 10.1016/j.ecoenv.2018.12.086
|
[12] |
HOUTZ E F, HIGGINS C P, FIELD J A, et al. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil[J]. Environmental Science & Technology, 2013, 47(15): 8187-8195.
|
[13] |
黄柳青, 王雯冉, 张浴曈, 等. 地表水中全氟及多氟烷基化合物(PFASs)的污染现状研究进展[J]. 环境化学, 2024, 43(3): 693-710. doi: 10.7524/j.issn.0254-6108.2022090901
HUANG L Q, WANG W R, ZHANG Y T, et al. Research progress on the pollution status of per-and polyfluoroalkyl substances(PFASs) in surface water: A review[J]. Environmental Chemistry, 2024, 43(3): 693-710 (in Chinese) . doi: 10.7524/j.issn.0254-6108.2022090901
|
[14] |
HALE S E, ARP H P H, SLINDE G A, et al. Sorbent amendment as a remediation strategy to reduce PFAS mobility and leaching in a contaminated sandy soil from a Norwegian firefighting training facility[J]. Chemosphere, 2017, 171: 9-18. doi: 10.1016/j.chemosphere.2016.12.057
|
[15] |
杨悦锁, 王园园, 宋晓明, 等. 土壤和地下水环境中胶体与污染物共迁移研究进展[J]. 化工学报, 2017, 68(1): 23-36.
YANG Y S, WANG Y Y, SONG X M, et al. Co-transport of colloids and facilitated contaminants in subsurface environment[J]. CIESC Journal, 2017, 68(1): 23-36 (in Chinese).
|
[16] |
刘胜, 梁媛, 王思雨. 土壤胶体迁移行为及其介导污染物迁移模拟与研究进展[J]. 化学通报, 2023, 86(7): 824-832.
LIU S, LIANG Y, WANG S Y. Research progress in soil colloid transport behavior and its mediated pollutant migration[J]. Chemistry, 2023, 86(7): 824-832 (in Chinese).
|
[17] |
XIE B Y, JIANG Y J, ZHANG Z, et al. Co-transport of Pb (Ⅱ) and Cd (Ⅱ) in saturated porous media: Effects of colloids, flow rate and grain size[J]. Chemical Speciation & Bioavailability, 2018, 30(1): 135-143.
|
[18] |
LI X Y, CAO Z Y, DU Y P, et al. Multi-metal contaminant mobilizations by natural colloids and nanoparticles in paddy soils during reduction and reoxidation[J]. Journal of Hazardous Materials, 2024, 461: 132684. doi: 10.1016/j.jhazmat.2023.132684
|
[19] |
DUAN L, YING Y Q, ZHONG J Y, et al. Key factors controlling colloids-bulk soil distribution of polybrominated diphenyl ethers (PBDEs) at an e-waste recycling site: Implications for PBDE mobility in subsurface environment[J]. The Science of the Total Environment, 2022, 819: 153080. doi: 10.1016/j.scitotenv.2022.153080
|
[20] |
DUAN L, ZHONG J Y, YING Y Q, et al. Preferential association of polycyclic aromatic hydrocarbons (PAHs) with soil colloids at an e-waste recycling site: Implications for risk of PAH migration to subsurface environment[J]. The Science of the Total Environment, 2023, 889: 164222. doi: 10.1016/j.scitotenv.2023.164222
|
[21] |
XING Y N, CHEN X J, CHEN X, et al. Colloid-mediated transport of pharmaceutical and personal care products through porous media[J]. Scientific Reports, 2016, 6: 35407. doi: 10.1038/srep35407
|
[22] |
CHEN X, FENG X M, SUN X, et al. Quantifying indirect contribution from precursors to human body burden of legacy PFASs based on paired blood and one-week duplicate diet[J]. Environmental Science & Technology, 2022, 56(9): 5632-5640.
|
[23] |
LIU Z Y, LU Y L, SONG X, et al. Multiple crop bioaccumulation and human exposure of perfluoroalkyl substances around a mega fluorochemical industrial park, China: Implication for planting optimization and food safety[J]. Environment International, 2019, 127: 671-684. doi: 10.1016/j.envint.2019.04.008
|
[24] |
LAN Z H, YAO Y M, XU J Y, et al. Novel and legacy per- and polyfluoroalkyl substances (PFASs) in a farmland environment: Soil distribution and biomonitoring with plant leaves and locusts[J]. Environmental Pollution, 2020, 263(Pt A): 114487.
|
[25] |
BAO J, LI C L, LIU Y, et al. Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China[J]. Environmental Research, 2020, 188: 109751. doi: 10.1016/j.envres.2020.109751
|
[26] |
XU B T, QIU W H, DU J, et al. Translocation, bioaccumulation, and distribution of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in plants[J]. iScience, 2022, 25(4): 104061. doi: 10.1016/j.isci.2022.104061
|
[27] |
CHEN X W, ZHU L Y, PAN X Y, et al. Isomeric specific partitioning behaviors of perfluoroalkyl substances in water dissolved phase, suspended particulate matters and sediments in Liao River Basin and Taihu Lake, China[J]. Water Research, 2015, 80: 235-244. doi: 10.1016/j.watres.2015.04.032
|
[28] |
MILINOVIC J, LACORTE S, VIDAL M, et al. Sorption behaviour of perfluoroalkyl substances in soils[J]. The Science of the Total Environment, 2015, 511: 63-71. doi: 10.1016/j.scitotenv.2014.12.017
|
[29] |
BORTHAKUR A, CRANMER B K, DOOLEY G P, et al. Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil[J]. Environmental Pollution, 2021, 286: 117297. doi: 10.1016/j.envpol.2021.117297
|
[30] |
LOGANATHAN N, WILSON A K. Adsorption, structure, and dynamics of short- and long-chain PFAS molecules in kaolinite: Molecular-level insights[J]. Environmental Science & Technology, 2022, 56(12): 8043-8052.
|
[31] |
CAMPOS-PEREIRA H, KLEJA D B, AHRENS L, et al. Effect of pH, surface charge and soil properties on the solid-solution partitioning of perfluoroalkyl substances (PFASs) in a wide range of temperate soils[J]. Chemosphere, 2023, 321: 138133. doi: 10.1016/j.chemosphere.2023.138133
|
[32] |
COSTELLO M C S, LEE L S. Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances[J]. Current Pollution Reports, 2020,DOI:10.1007/s40726-020-00168-y.
|
[33] |
胡桂林, 吕兆媛, 苗育, 等. 全氟辛酸在腐殖酸上的吸附平衡[J]. 环境化学, 2019, 38(4): 943-949. doi: 10.7524/j.issn.0254-6108.2018053005
HU G L, LYU Z Y, MIAO Y, et al. Adsorption of perfluorooctanoic acid on humic acid[J]. Environmental Chemistry, 2019, 38(4): 943-949 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018053005
|
[34] |
LAMPIC A, PARNIS J M. Property estimation of per- and polyfluoroalkyl substances: A comparative assessment of estimation methods[J]. Environmental Toxicology and Chemistry, 2020, 39(4): 775-786. doi: 10.1002/etc.4681
|