[1] WANG Q, LI S Q. Shale gas industry sustainability assessment based on WSR methodology and fuzzy matter-element extension model: The case study of China[J]. Journal of Cleaner Production, 2019, 226: 336-348. doi: 10.1016/j.jclepro.2019.03.346
[2] U. S. Energy Information Administration - EIA - Independent Statistics and Analysis[EB/OL]. [2023-10-26].
[3] 蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五” 油气勘探进展与“十四五” 前景展望[J]. 中国石油勘探, 2021, 26(1): 31-42. CAI X Y, LIU J L, ZHANG Y, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31-42 (in Chinese).
[4] LI L, WU F, CAO Y Y, et al. Sustainable development index of shale gas exploitation in China, the UK, and the US[J]. Environmental Science and Ecotechnology, 2022, 12: 100202. doi: 10.1016/j.ese.2022.100202
[5] MA L T, HURTADO A, EGUILIOR S, et al. Acute and chronic risk assessment of BTEX in the return water of hydraulic fracturing operations in Marcellus Shale[J]. Science of the Total Environment, 2024, 906: 167638. doi: 10.1016/j.scitotenv.2023.167638
[6] ZHONG C, ZOLFAGHARI A, HOU D Y, et al. Comparison of the hydraulic fracturing water cycle in China and North America: A critical review[J]. Environmental Science & Technology, 2021, 55(11): 7167-7185.
[7] TAO Z, LIU C H, HE Q, et al. Detection and treatment of organic matters in hydraulic fracturing wastewater from shale gas extraction: A critical review[J]. Science of the Total Environment, 2022, 824: 153887. doi: 10.1016/j.scitotenv.2022.153887
[8] MA L T, HURTADO A, EGUILIOR S, et al. Exposure risk assessment to organic compounds based on their concentrations in return water from shale gas developments[J]. Science of the Total Environment, 2022, 822: 153586. doi: 10.1016/j.scitotenv.2022.153586
[9] HUANG C, JIN B, HAN M, et al. Identifying persistent, mobile and toxic (PMT) organic compounds detected in shale gas wastewater[J]. Science of the Total Environment, 2023, 858: 159821. doi: 10.1016/j.scitotenv.2022.159821
[10] WILLEMS D J, KUMAR A, NUGEGODA D. Mixture toxicity of three unconventional gas fracking chemicals, Barium, O-cresol, and sodium chloride, to the freshwater shrimp Paratya australiensis[J]. Environmental Toxicology and Chemistry, 2023, 42(2): 481-494. doi: 10.1002/etc.5538
[11] ZHANG G Y, ZHAO F, CHENG X W, et al. Resource utilization from solid waste originated from oil-based shale drilling cutting during shale gas development[J]. Chemosphere, 2022, 298: 134318. doi: 10.1016/j.chemosphere.2022.134318
[12] ZHOU S B, LI Z Q, PENG S C, et al. River water influenced by shale gas wastewater discharge for paddy irrigation has limited effects on soil properties and microbial communities[J]. Ecotoxicology and Environmental Safety, 2023, 251: 114552. doi: 10.1016/j.ecoenv.2023.114552
[13] KOOKANA R S, WILLIAMS M, GREGG A, et al. Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils[J]. Environmental Pollution, 2022, 309: 119754. doi: 10.1016/j.envpol.2022.119754
[14] GOLDING L A, KUMAR A, ADAMS M S, et al. The influence of salinity on the chronic toxicity of shale gas flowback wastewater to freshwater organisms[J]. Journal of Hazardous Materials, 2022, 428: 128219. doi: 10.1016/j.jhazmat.2022.128219
[15] 王中华. 国内油基钻井液研究与应用综述[J]. 中外能源, 2022, 27(8): 29-36. WANG Z H. A review of oil-based drilling fluid research and application in China[J]. Sino-Global Energy, 2022, 27(8): 29-36 (in Chinese).
[16] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报(自然科学版), 2023, 47(5): 76-89. SUN J S, JIANG G C, HE Y B, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(5): 76-89 (in Chinese).
[17] XIONG D M, HAN X. Particular pollutants, human health risk and ecological risk of oil-based drilling fluid: A case study of Fuling shale gas field[J]. Environmental Geochemistry and Health, 2023, 45(3): 981-995. doi: 10.1007/s10653-022-01259-z
[18] XIE B X, QIN J H, SUN H, et al. Release characteristics of polycyclic aromatic hydrocarbons (PAHs) leaching from oil-based drilling cuttings[J]. Chemosphere, 2022, 291: 132711. doi: 10.1016/j.chemosphere.2021.132711
[19] LI Y T, ZHENG B P, YANG Y H, et al. Soil microbial ecological effect of shale gas oil-based drilling cuttings pyrolysis residue used as soil covering material[J]. Journal of Hazardous Materials, 2022, 436: 129231. doi: 10.1016/j.jhazmat.2022.129231
[20] CHEN K J, HE R, WANG L A, et al. The dominant microbial metabolic pathway of the petroleum hydrocarbons in the soil of shale gas field: Carbon fixation instead of CO2 emissions[J]. Science of the Total Environment, 2022, 807: 151074. doi: 10.1016/j.scitotenv.2021.151074
[21] 王兵, 李珍珍, 李琋, 等. 页岩气井场土壤石油类污染特性及对理化性质的影响[J]. 安全与环境学报, 2018, 18(4): 1598-1604. WANG B, LI Z Z, LI X, et al. On the contamination features and their relationship with the physicochemical properties of petroleum hydrocarbon polluted soils in the shale gas fields[J]. Journal of Safety and Environment, 2018, 18(4): 1598-1604 (in Chinese).
[22] XU Q, WU W, XIAO Z F, et al. Responses of soil and collembolan (Folsomia candida) gut microbiomes to 6PPD-Q pollution[J]. Science of the Total Environment, 2023, 900: 165810. doi: 10.1016/j.scitotenv.2023.165810
[23] CIPULLO S, PRPICH G, CAMPO P, et al. Assessing bioavailability of complex chemical mixtures in contaminated soils: Progress made and research needs[J]. Science of the Total Environment, 2018, 615: 708-723. doi: 10.1016/j.scitotenv.2017.09.321
[24] OLIVER M, ADROVER M, FRONTERA A, et al. In-vitro prediction of the membranotropic action of emerging organic contaminants using a liposome-based multidisciplinary approach[J]. Science of the Total Environment, 2020, 738: 140096. doi: 10.1016/j.scitotenv.2020.140096
[25] CHEN H Y, TIAN Y X, CAI Y X, et al. A 50-year systemic review of bioavailability application in Soil environmental criteria and risk assessment[J]. Environmental Pollution, 2023, 335: 122272. doi: 10.1016/j.envpol.2023.122272
[26] CHEN Y J, FENG X J, LIU X G, et al. Bioavailability assessment of difenoconazole to earthworms (Eisenia fetida) in soil by oleic acid-embedded cellulose acetate membrane[J]. Science of the Total Environment, 2023, 905: 167276. doi: 10.1016/j.scitotenv.2023.167276
[27] YI X Y, LI H Z, MA P, et al. Identifying the causes of sediment-associated toxicity in urban waterways in South China: Incorporating bioavailabillity-based measurements into whole-sediment toxicity identification evaluation[J]. Environmental Toxicology and Chemistry, 2015, 34(8): 1744-1750. doi: 10.1002/etc.2970
[28] REINECKE A J, van WYK M, REINECKE S A. The influence of soil characteristics on the toxicity of oil refinery waste for the springtail Folsomia candida (collembola)[J]. Bulletin of Environmental Contamination and Toxicology, 2016, 96(6): 804-809. doi: 10.1007/s00128-016-1792-9
[29] 由宗政, 孔德洋, 许静, 等. 加速溶剂萃取-气相色谱法测定土壤、植物样品中13种多溴联苯醚[J]. 环境化学, 2013, 32(7): 1410-1416. doi: 10.7524/j.issn.0254-6108.2013.07.040 YOU Z Z, KONG D Y, XU J, et al. Determination of 13 polybrominated biphenyl ethers in soil and plant using accelerated solvent extraction and gas chromatography[J]. Environmental Chemistry, 2013, 32(7): 1410-1416 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.040
[30] YOU J, PEHKONEN S, LANDRUM P F, et al. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction[J]. Environmental Science & Technology, 2007, 41(16): 5672-5678.
[31] LI C, XU S, GUAN D X, et al. Comparison of in vitro strategies for predicting Dichlorodiphenyltrichloroethane (DDT) and its metabolites bioavailability from soils[J]. Ecotoxicology and Environmental Safety, 2023, 256: 114885. doi: 10.1016/j.ecoenv.2023.114885
[32] 宫兆波, 郭瑛瑛, 张燕萍, 等. 基因工程菌在石油污染修复中的研究进展与前景[J]. 环境化学, 2024, 43(1): 14-26. GONG Z B, GUO Y Y, ZHANG Y P, et al. The application of genetically engineered bacteria in petroleum hydrocarbon pollution remediation: progress and challenges[J]. Environmental Chemistry,2024, 43(1): 14-26 (in Chinese).
[33] 韩民, 黄晨, 刘世洋, 等. 页岩气开采水力压裂返排水中化学污染物的组成特征[J]. 环境化学, 2022, 41(1): 305-314. doi: 10.7524/j.issn.0254-6108.2021050302 HAN M, HUANG C, LIU S Y, et al. Compositional characteristics of chemical pollutants in flowback water during shale gas hydraulic fracking[J]. Environmental Chemistry, 2022, 41(1): 305-314 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021050302
[34] 蒙恬, 单翀, 罗欢, 等. 油田典型含油污泥污染特性对比分析[J]. 石油化工应用, 2023, 42(5): 52-56. MENG T, SHAN C, LUO H, et al. Comparative analysis of pollution characteristics of typical oily sludge in oilfields[J]. Petrochemical Industry Application, 2023, 42(5): 52-56 (in Chinese).
[35] STOUT S A, BREY A P. Appraisal of coal- and coke-derived wastes in soils near a former manufactured gas plant, Jacksonville, Florida[J]. International Journal of Coal Geology, 2019, 213: 103265. doi: 10.1016/j.coal.2019.103265
[36] CHEN X X, LI C, CAO X Y, et al. Bioaccessibility and bioavailability of NPAHs in soils using in vitro-in vivo assays: Comparison of laboratory and outdoor environmental aging effect[J]. Science of the Total Environment, 2023, 868: 161619. doi: 10.1016/j.scitotenv.2023.161619
[37] GOSPODAREK J, RUSIN M. Effect of soil polluted with petroleum-DerivedSubstances during bioremediationon the occurrence of collembolaand Acarina[J]. Polish Journal of Environmental Studies, 2020, 29(5): 3115-3125. doi: 10.15244/pjoes/114259
[38] MIAO J J, CHEN X L, XU T, et al. Bioaccumulation, distribution and elimination of lindane in Eisenia foetida: The aging effect[J]. Chemosphere, 2018, 190: 350-357. doi: 10.1016/j.chemosphere.2017.09.138
[39] MORRISON D E, ROBERTSON B K, ALEXANDER M. Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil[J]. Environmental Science & Technology, 2000, 34(4): 709-713.
[40] WANG J, TAYLOR A, XU C Y, et al. Evaluation of different methods for assessing bioavailability of DDT residues during soil remediation[J]. Environmental Pollution, 2018, 238: 462-470. doi: 10.1016/j.envpol.2018.02.082
[41] GUO M X, GONG Z Q, LI X J, et al. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays[J]. Ecotoxicology and Environmental Safety, 2017, 140: 191-197. doi: 10.1016/j.ecoenv.2017.02.044