[1] |
ZIMMERMANN M B, GIZAK M, ABBOTT K, et al. Iodine deficiency in pregnant women in Europe[J]. The Lancet. Diabetes & Endocrinology, 2015, 3(9): 672-674.
|
[2] |
于汀汀, 马生凤, 王蕾, 等. 电感耦合等离子质谱同时测定地下水中的溴及碘 [J]. 矿物岩石地球化学通报: 2023, 42: 053.
YU T T, MA S F, WANG L, et al. Simultaneous determination of bromine and iodine in underground water by inductively coupling plasma-mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42: 053(in Chinese).
|
[3] |
IGN. Global scorecard of iodine nutrition in 2021 in the general population based on school-age children (SAC) [R]. IGN, Ottawa, Canada, 2021.
|
[4] |
LAWSON P G, DAUM D, CZAUDERNA R, et al. Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables[J]. Frontiers in Plant Science, 2015, 6: 450.
|
[5] |
SMOLEŃ S, SADY W. Influence of iodine form and application method on the effectiveness of iodine biofortification, nitrogen metabolism as well as the content of mineral nutrients and heavy metals in spinach plants (Spinacia oleracea L )[J]. Scientia Horticulturae, 2012, 143: 176-183. doi: 10.1016/j.scienta.2012.06.006
|
[6] |
CAKMAK I, PROM-U-THAI C, GUILHERME L R G, et al. Iodine biofortification of wheat, rice and maize through fertilizer strategy[J]. Plant and Soil, 2017, 418(1): 319-335.
|
[7] |
DOBOSY P, ENDRÉDI A, SANDIL S, et al. Biofortification of potato and carrot with iodine by applying different soils and irrigation with iodine-containing water[J]. Frontiers in Plant Science, 2020, 11: 593047. doi: 10.3389/fpls.2020.593047
|
[8] |
KIFERLE C, ASCRIZZI R, MARTINELLI M, et al. Effect of Iodine treatments on Ocimum basilicum L : Biofortification, phenolics production and essential oil composition[J]. PLoS One, 2019, 14(12): e02266559.
|
[9] |
HUMPHREY O S, YOUNG S D, BAILEY E H, et al. Iodine soil dynamics and methods of measurement: a review[J]. Environmental Science. Processes & Impacts, 2018, 20(2): 288-310.
|
[10] |
FUGE R, JOHNSON C C. Iodine and human health, the role of environmental geochemistry and diet, a review[J]. Applied Geochemistry, 2015, 63: 282-302. doi: 10.1016/j.apgeochem.2015.09.013
|
[11] |
JOHNSON C C. Database of the iodine content of soils populated with data from published literature[J]. Keyworth, Nottingham British Geological Survey, 2003.
|
[12] |
马常莲, 周金龙, 曾妍妍, 等. 新疆若羌县农用地表层土壤硒氟碘地球化学特征[J]. 物探与化探, 2022, 46(6): 1573-1580.
MA C L, ZHOU J L, ZENG Y Y, et al. Geochemical characteristics of selenium, fluorine, iodine in surface soil of the agricultural land in Ruoqiang County, Xinjiang[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1573-1580 (in Chinese).
|
[13] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
China National Environmental Monitoring Centre. Chinese soil element background value [M]. Beijing: China Environmental Science Press, 1990(in Chinese).
|
[14] |
ANDREWS S J, JONES C E, CARPENTER L J. Aircraft measurements of very short-lived halocarbons over the tropical Atlantic Ocean[J]. Geophysical Research Letters, 2013, 40(5): 1005-1010. doi: 10.1002/grl.50141
|
[15] |
WANG W, WANG X Q, ZHANG B M, et al. Spatial distribution of iodine in the pedosphere of China and its influencing factors[J]. Journal of Geochemical Exploration, 2023, 248: 107191. doi: 10.1016/j.gexplo.2023.107191
|
[16] |
周红, 何欢, 肖蒙, 等. 云南省森林土壤腐殖质组分特征及影响因素[J]. 土壤学报, 2021, 58(4): 1008-1017.
ZHOU H, HE H, XIAO M, et al. Composition of humus in forest soils of Yunnan Province, China and its influencing factors[J]. Acta Pedologica Sinica, 2021, 58(4): 1008-1017 (in Chinese).
|
[17] |
ROULIER M, COPPIN F, BUENO M, et al. Iodine budget in forest soils: Influence of environmental conditions and soil physicochemical properties[J]. Chemosphere, 2019, 224: 20-28. doi: 10.1016/j.chemosphere.2019.02.060
|
[18] |
DUBORSKÁ E, BUJDOŠ M, URÍK M, et al. Iodine fractionation in agricultural and forest soils using extraction methods[J]. CATENA, 2020, 195: 104749. doi: 10.1016/j.catena.2020.104749
|
[19] |
YAMADA H, KIRIYAMA T, ONAGAWA Y, et al. Speciation of iodine in soils[J]. Soil Science and Plant Nutrition, 1999, 45(3): 563-568. doi: 10.1080/00380768.1999.10415819
|
[20] |
LI J X, WANG Y X, GUO W, et al. Iodine mobilization in groundwater system at Datong Basin, China: Evidence from hydrochemistry and fluorescence characteristics[J]. Science of the Total Environment, 2014, 468-469: 738-745. doi: 10.1016/j.scitotenv.2013.08.092
|
[21] |
DUBORSKÁ E, MATULOVÁ M, VACULOVIČ T, et al. Iodine fractions in soil and their determination[J]. Forests, 2021, 12(11): 1512. doi: 10.3390/f12111512
|
[22] |
HOU X L, HANSEN V, ALDAHAN A, et al. A review on speciation of iodine-129 in the environmental and biological samples[J]. Analytica Chimica Acta, 2009, 632(2): 181-196. doi: 10.1016/j.aca.2008.11.013
|
[23] |
HANSEN V, ROOS P, ALDAHAN A, et al. Partition of iodine (129I and 127I) isotopes in soils and marine sediments[J]. Journal of Environmental Radioactivity, 2011, 102(12): 1096-1104. doi: 10.1016/j.jenvrad.2011.07.005
|
[24] |
吴祎, 邓冬莉, 胡科, 等. 分光光度法测定食盐中的碘含量[J]. 轻工科技, 2018, 34(9): 18-19.
WU Y, DENG D L, HU K, et al. Spectrophotometric determination of iodine content in table salt[J]. Light Industry Science and Technology, 2018, 34(9): 18-19 (in Chinese).
|
[25] |
苏宇亮, 吴杰, 方黎, 等. 离子色谱-电感耦合等离子体质谱联用法同时分析水中碘酸根和碘离子[J]. 给水排水, 2008, 34(7): 29-31.
SU Y L, WU J, FANG L, et al. Analysis of iodate and iodine ion in water by ion chromatography(IC) coupled with inductively coupled plasma mass spectrometry(ICP-MS)[J]. Water & Wastewater Engineering, 2008, 34(7): 29-31 (in Chinese).
|
[26] |
刘崴, 曹蔚然, 胡俊栋, 等. 高效液相色谱-电感耦合等离子体质谱法测定紫菜中的碘形态[J]. 分析试验室, 2017, 36(9): 1028-1031.
LIU W, CAO W R, HU J D, et al. Determination of iodine species in seaweed samples using high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(9): 1028-1031 (in Chinese).
|
[27] |
柴小丽, 高丹丹, 李海军, 等. ICP-AES测定微量碘进样装置的设计及应用[J]. 盐湖研究, 2021, 29(2): 94-101.
CHAI X L, GAO D D, LI H J, et al. Design and application of sampling device for determination of trace iodine by ICP-AES[J]. Journal of Salt Lake Research, 2021, 29(2): 94-101 (in Chinese).
|
[28] |
TAKEDA A, TSUKADA H, TAKAHASHI M, et al. Changes in the chemical form of exogenous iodine in forest soils and their extracts[J]. Radiation Protection Dosimetry, 2015, 167(1/2/3): 181-186.
|
[29] |
赖阳巍. 电感耦合等离子体质谱法测定土壤中的总碘[J]. 土壤, 2018, 50(1): 221-224.
LAI Y W. Determination of iodine in soil by inductively coupled plasma mass spectrometry[J]. Soils, 2018, 50(1): 221-224 (in Chinese).
|
[30] |
徐长龙, 赵志飞, 宋娟娥. 电感耦合等离子体质谱法分析碘元素时的有机增敏效应及消除[J]. 环境化学, 2022, 41(1): 405-408.
XU C L, ZHAO Z F, SONG J E. Organic sensitization effect and eliminate in determination of iodine by inductively coupled plasma mass spectrometry[J]. Environmental Chemistry, 2022, 41(1): 405-408 (in Chinese).
|
[31] |
ROULIER M, BUENO M, THIRY Y, et al. Iodine distribution and cycling in a beech (Fagus sylvatica) temperate forest[J]. Science of the Total Environment, 2018, 645: 431-440. doi: 10.1016/j.scitotenv.2018.07.039
|
[32] |
KESARI R, RASTOGI R, GUPTA V. A simple and sensitive spectrophotometric method for the determination of iodine in environmental samples[J]. Chemia Analityczna, 1998, 43: 201-207.
|
[33] |
MOHIUDDIN M, HUSSAIN Z, ABBASI A, et al. Sawdust amendment in agricultural and pasture soils can reduce iodine losses[J]. Sustainability, 2022, 14(20): 13620. doi: 10.3390/su142013620
|
[34] |
FARIDULLAH F, SHABBIR H, IQBAL A, et al. Iodine supplementation through its biofortification in Brassica species depending on the type of soil[J]. Environmental Science and Pollution Research, 2023, 30(13): 37208-37218.
|
[35] |
YAN T Y, FAROOQ A, MOHIUDDIN M, et al. Role of different organic and inorganic amendments in the biofortification of iodine in Coriandrum sativum crop[J]. Frontiers in Ecology and Evolution, 2023, 11: 1145979. doi: 10.3389/fevo.2023.1145979
|
[36] |
PISAREK P, BUENO M, THIRY Y, et al. Influence of tree species on selenium and iodine partitioning in an experimental forest ecosystem[J]. The Science of the Total Environment, 2022, 809: 151174. doi: 10.1016/j.scitotenv.2021.151174
|
[37] |
JENSEN H, ORTH B, REISER R, et al. Environmental parameters affecting the concentration of iodine in New Zealand pasture[J]. Journal of Environmental Quality, 2019, 48(5): 1517-1523. doi: 10.2134/jeq2019.03.0128
|
[38] |
OJOK J, OMARA P, OPOLOT E, et al. Iodine agronomic biofortification of cabbage (Brassica oleracea var. capitata) and cowpea (Vigna unguiculata L. ) is effective under farmer field conditions[J]. Agronomy, 2019, 9(12): 797. doi: 10.3390/agronomy9120797
|
[39] |
ROULIER M, CARASCO L, ORJOLLET D, et al. Iodine distribution and volatilization in contrasting forms of forest humus during a laboratory incubation experiment[J]. Journal of Environmental Radioactivity, 2022, 248: 106872. doi: 10.1016/j.jenvrad.2022.106872
|
[40] |
SMOLEŃ S, KOWALSKA I, SKOCZYLAS Ł, et al. Effectiveness of enriching lettuce with iodine using 5-iodosalicylic and 3, 5-diiodosalicylic acids and the chemical composition of plants depending on the type of soil in a pot experiment[J]. Food Chemistry, 2022, 382: 132347. doi: 10.1016/j.foodchem.2022.132347
|
[41] |
MOHIUDDIN M, ALI J, LETA M K, et al. Estimation of iodine leaching in soil amended with organic and inorganic materials using HYDRUS 1-D model[J]. Sustainability, 2021, 13(19): 10967. doi: 10.3390/su131910967
|
[42] |
AHMAD S, BAILEY E H, ARSHAD M, et al. Multiple geochemical factors may cause iodine and selenium deficiency in Gilgit-Baltistan, Pakistan[J]. Environmental Geochemistry and Health, 2021, 43(11): 4493-4513. doi: 10.1007/s10653-021-00936-9
|
[43] |
GRZANKA M, SMOLEŃ S, SKOCZYLAS Ł, et al. Biofortification of sweetcorn with iodine: Interaction of organic and inorganic forms of iodine combined with vanadium[J]. Agronomy, 2021, 11(9): 1720. doi: 10.3390/agronomy11091720
|
[44] |
SMOLEŃ S, LEDWOŻYW-SMOLEŃ I, SADY W. The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L. )[J]. Plant and Soil, 2016, 402(1): 129-143.
|
[45] |
KÖHLER F, RIEBE B, SCHEINOST A C, et al. Sorption of iodine in soils: Insight from selective sequential extractions and X-ray absorption spectroscopy[J]. Environmental Science and Pollution Research, 2019, 26(23): 23850-23860. doi: 10.1007/s11356-019-05623-y
|
[46] |
DAI J L, ZHANG M, HU Q H, et al. Adsorption and desorption of iodine by various Chinese soils: II. Iodide and iodate[J]. Geoderma, 2009, 153(1/2): 130-135.
|
[47] |
SEKI M, OIKAWA J I, TAGUCHI T, et al. Laccase-catalyzed oxidation of iodide and formation of organically bound iodine in soils[J]. Environmental Science & Technology, 2013, 47(1): 390-397.
|
[48] |
STEINBERG S M, KIMBLE G M, SCHMETT G T, et al. Abiotic reaction of iodate with sphagnum peat and other natural organic matter[J]. Journal of Radioanalytical and Nuclear Chemistry, 2008, 277(1): 185-191. doi: 10.1007/s10967-008-0728-1
|
[49] |
YEAGER C M, AMACHI S, GRANDBOIS R, et al. Microbial transformation of iodine: From radioisotopes to iodine deficiency[J]. Advances in Applied Microbiology, 2017, 101: 83-136.
|
[50] |
BOWLEY H E, YOUNG S D, ANDER E L, et al. Iodine binding to humic acid[J]. Chemosphere, 2016, 157: 208-214. doi: 10.1016/j.chemosphere.2016.05.028
|
[51] |
DUBORSKÁ E, URÍK M, BUJDOŠ M, et al. Influence of physicochemical properties of various soil types on iodide and iodate sorption[J]. Chemosphere, 2019, 214: 168-175. doi: 10.1016/j.chemosphere.2018.09.041
|
[52] |
SZLAMKOWICZ I B, FENTRESS A J, LONGEN L F, et al. Transformations and speciation of iodine in the environment as a result of oxidation by manganese minerals[J]. ACS Earth and Space Chemistry, 2022, 6(8): 1948-1956. doi: 10.1021/acsearthspacechem.1c00372
|
[53] |
HONG C L, WENG H X, JILANI G, et al. Evaluation of iodide and iodate for adsorption-desorption characteristics and bioavailability in three types of soil[J]. Biological Trace Element Research, 2012, 146(2): 262-271. doi: 10.1007/s12011-011-9231-6
|
[54] |
JUNIOR E C D, WADT L H O, Da SILVA K E, et al. Geochemistry of selenium, Barium, and iodine in representative soils of the Brazilian Amazon rainforest[J]. The Science of the Total Environment, 2022, 828: 154426. doi: 10.1016/j.scitotenv.2022.154426
|
[55] |
闫志雲, 曾妍妍, 周金龙, 等. 新疆喀什地区地下水碘的分布特征及成因分析[J]. 环境化学, 2022, 41(12): 4077-4086. doi: 10.7524/j.issn.0254-6108.2021081401
YAN Z Y, ZENG Y Y, ZHOU J L, et al. Distribution characteristics and cause analysis of iodine in groundwater in Kashi Prefecture, Xinjiang[J]. Environmental Chemistry, 2022, 41(12): 4077-4086 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021081401
|
[56] |
周殷竹, 孙英, 周金龙, 等. 新疆石河子地区地下水砷、碘分布规律及共富集因素分析[J]. 环境化学, 2021, 40(11): 3464-3473. doi: 10.7524/j.issn.0254-6108.2020070601
ZHOU Y Z, SUN Y, ZHOU J L, et al. Distribution and co-enrichment factors of arsenic and iodine in groundwater in the Shihezi area, Xinjiang[J]. Environmental Chemistry, 2021, 40(11): 3464-3473 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070601
|
[57] |
XU C, ZHANG S J, SUGIYAMA Y, et al. Role of natural organic matter on iodine and 239, 240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan[J]. Journal of Environmental Radioactivity, 2016, 153: 156-166. doi: 10.1016/j.jenvrad.2015.12.022
|
[58] |
COX E M, ARAI Y. Environmental chemistry and toxicology of iodine[J]. Advances in Agronomy. 2014, 128: 47-96.
|
[59] |
LI D E, XU C, YEAGER C M, et al. Molecular interaction of aqueous iodine species with humic acid studied by I and C K-edge X-ray absorption spectroscopy[J]. Environmental Science & Technology, 2019, 53(21): 12416-12424.
|
[60] |
NIHEI R, USAMI M, TAGUCHI T, et al. Role of fungal laccase in iodide oxidation in soils[J]. Journal of Environmental Radioactivity, 2018, 189: 127-134. doi: 10.1016/j.jenvrad.2018.03.016
|
[61] |
CHANG H S, XU C, SCHWEHR K A, et al. Model of radioiodine speciation and partitioning in organic-rich and organic-poor soils from the Savannah River Site[J]. Journal of Environmental Chemical Engineering, 2014, 2(3): 1321-1330. doi: 10.1016/j.jece.2014.03.009
|
[62] |
XU C, LIN P, GARIMELLA R, et al. 1H-13C heteronuclear single quantum coherence NMR evidence for iodination of natural organic matter influencing organo-iodine mobility in the environment[J]. The Science of the Total Environment, 2022, 814: 152546. doi: 10.1016/j.scitotenv.2021.152546
|
[63] |
HUMPHREY O S, YOUNG S D, CROUT N M J, et al. Short-term iodine dynamics in soil solution[J]. Environmental Science & Technology, 2020, 54(3): 1443-1450.
|
[64] |
DU J S, KIM K, SON S, et al. MnO2-induced oxidation of iodide in frozen solution[J]. Environmental Science & Technology, 2023, 57(13): 5317-5326.
|
[65] |
LI H P, YEAGER C M, BRINKMEYER R, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation[J]. Environmental Science & Technology, 2012, 46(9): 4837-4844.
|
[66] |
LEE B D, ELLIS J T, DODWELL A, et al. Iodate and nitrate transformation by Agrobacterium/Rhizobium related strain DVZ35 isolated from contaminated Hanford groundwater[J]. Journal of Hazardous Materials, 2018, 350: 19-26. doi: 10.1016/j.jhazmat.2018.02.006
|
[67] |
NEEWAY J J, KAPLAN D I, BAGWELL C E, et al. A review of the behavior of radioiodine in the subsurface at two DOE sites[J]. The Science of the Total Environment, 2019, 691: 466-475. doi: 10.1016/j.scitotenv.2019.07.146
|
[68] |
JIANG Z, HUANG M H, JIANG Y G, et al. Microbial contributions to iodide enrichment in deep groundwater in the North China plain[J]. Environmental Science & Technology, 2023, 57(6): 2625-2635.
|
[69] |
DUBORSKÁ E, URÍK M, BUJDOŠ M. Comparison of iodide and iodate accumulation and volatilization by filamentous fungi during static cultivation[J]. Water, Air, & Soil Pollution, 2017, 228(6): 225.
|
[70] |
DUBORSKÁ E, BALÍKOVÁ K, MATULOVÁ M, et al. Production of methyl-iodide in the environment[J]. Frontiers in Microbiology, 2021, 12: 804081. doi: 10.3389/fmicb.2021.804081
|
[71] |
BAGWELL C E, ZHONG L R, WELLS J R, et al. Microbial methylation of iodide in unconfined aquifer sediments at the Hanford site, USA[J]. Frontiers in Microbiology, 2019, 10: 2460. doi: 10.3389/fmicb.2019.02460
|
[72] |
THIRY Y, TANAKA T, BUENO M, et al. Recycling and persistence of iodine 127 and 129 in forested environments: A modelling approach[J]. The Science of the Total Environment, 2022, 831: 154901. doi: 10.1016/j.scitotenv.2022.154901
|
[73] |
OTA M, TERADA H, HASEGAWA H, et al. Processes affecting land-surface dynamics of 129I impacted by atmospheric 129I releases from a spent nuclear fuel reprocessing plant[J]. The Science of the Total Environment, 2020, 704: 135319. doi: 10.1016/j.scitotenv.2019.135319
|
[74] |
HUMPHREY O S, YOUNG S D, BAILEY E H, et al. Iodine uptake, storage and translocation mechanisms in spinach (Spinacia oleracea L. )[J]. Environmental Geochemistry and Health, 2019, 41(5): 2145-2156. doi: 10.1007/s10653-019-00272-z
|
[75] |
DOBOSY P, VETÉSI V, SANDIL S, et al. Effect of irrigation water containing iodine on plant physiological processes and elemental concentrations of cabbage (Brassica oleracea L. var.capitata L. ) and tomato (Solanum lycopersicum L. ) cultivated in different soils[J]. Agronomy, 2020, 10(5): 720. doi: 10.3390/agronomy10050720
|
[76] |
HALKA M, SMOLEŃ S, CZERNICKA M, et al. Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L[J]. Plant Physiology and Biochemistry:PPB, 2019, 144: 35-48. doi: 10.1016/j.plaphy.2019.09.028
|
[77] |
HALKA M, KLIMEK-CHODACKA M, SMOLEŃ S, et al. Organic iodine supply affects tomato plants differently than inorganic iodine[J]. Physiologia Plantarum, 2018, 164(3): 290-306. doi: 10.1111/ppl.12733
|