[1] |
秦大河. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2014: 23-30.
QIN D H. Glossary of cryosphere science[M]. Beijing: China Meteorological Press, 2014: 23-30(in Chinese).
|
[2] |
徐丽萍, 李鹏辉, 李忠勤, 等. 新疆山地冰川变化及影响研究进展[J]. 水科学进展, 2020, 31(6): 946-959.
XU L P, LI P H, LI Z Q, et al. Advances in research on changes and effects of glaciers in Xinjiang Mountains[J]. Advances in Water Science, 2020, 31(6): 946-959 (in Chinese).
|
[3] |
ZHANG Y L, GAO T G, KANG S C, et al. Albedo reduction as an important driver for glacier melting in Tibetan Plateau and its surrounding areas[J]. Earth-Science Reviews, 2021, 220: 103735. doi: 10.1016/j.earscirev.2021.103735
|
[4] |
张震, 刘时银. 1970—2016年青藏高原岗扎日冰川变化与物质平衡遥感监测研究[J]. 地球信息科学学报, 2018, 20(9): 1338-1349.
ZHANG Z, LIU S Y. Area changes and mass balance of glaciers in KangzhagRi of the Tibetan Plateau from 1970 to 2016 derived from remote sensing data[J]. Journal of Geo-Information Science, 2018, 20(9): 1338-1349 (in Chinese).
|
[5] |
CAI X R, LI Z Q, ZHANG H, et al. Vulnerability of glacier change in the Tianshan Mountains region of China[J]. Journal of Geographical Sciences, 2021, 31(10): 1469-1489. doi: 10.1007/s11442-021-1907-z
|
[6] |
杨圆, 杨建平, 李曼, 等. 冰川变化及其影响的公众感知与适应措施分析: 以甘肃河西内陆河流域为例[J]. 冰川冻土, 2015, 37(1): 70-79.
YANG Y, YANG J P, LI M, et al. Public perception and selections of adaptation measures against glacier change and its impacts: Taking the Hexi inland river basin as an example[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 70-79 (in Chinese).
|
[7] |
白玛央宗, 拉珍, 扎西央宗. 1973—2020年西藏昂拉仁错流域湖泊及东部冰川对气候变化的响应[J]. 高原山地气象研究, 2021, 41(3): 88-94.
BAIMAYANGZONG, LAZHEN, ZHA X. Responses of lakes and glaciers of Tibet to climate change from 1973 to 2020[J]. Plateau and Mountain Meteorology Research, 2021, 41(3): 88-94 (in Chinese).
|
[8] |
张照志, 李厚民, 潘昭帅, 等. 新发展阶段中国矿产资源国情调查与评价现状及其技术体系[J]. 中国矿业, 2022, 31(2): 21-27.
ZHANG Z Z, LI H M, PAN Z S, et al. The present situation of national mineral resources conditions investigation and appraisal (NMRCIA) and its supporting technological systems in the new development stage, China[J]. China Mining Magazine, 2022, 31(2): 21-27 (in Chinese).
|
[9] |
刘志强. 新疆矿产资源种类及特点分析[J]. 世界有色金属, 2018(18): 106-107.
LIU Z Q. Analysis on the types and characteristics of mineral resources in Xinjiang[J]. World Nonferrous Metals, 2018(18): 106-107 (in Chinese).
|
[10] |
姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1): 222-230.
YAO J Q, YANG Q, MAO W Y, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1): 222-230 (in Chinese).
|
[11] |
蔡兴冉, 李忠勤, 张慧, 等. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268.
CAI X R, LI Z Q, ZHANG H, et al. Vulnerability of glacier change in Chinese Tianshan Mountains[J]. Acta Geographica Sinica, 2021, 76(9): 2253-2268 (in Chinese).
|
[12] |
张慧, 李忠勤, 牟建新, 等. 近50年新疆天山奎屯河流域冰川变化及其对水资源的影响[J]. 地理科学, 2017, 37(11): 1771-1777.
ZHANG H, LI Z Q, MU J X, et al. Impact of the glacier change on water resources in the Kuytun River Basin, Tianshan mountains during recent 50 years[J]. Scientia Geographica Sinica, 2017, 37(11): 1771-1777 (in Chinese).
|
[13] |
NÜSSER M, SCHMIDT S. Glacier changes on the Nanga Parbat 1856-2020: A multi-source retrospective analysis[J]. The Science of the Total Environment, 2021, 785: 147321. doi: 10.1016/j.scitotenv.2021.147321
|
[14] |
李明月, 孙学军, 李胜楠, 等. 青藏高原及其周边地区冰川融水径流无机水化学特征研究进展[J]. 冰川冻土, 2020, 42(2): 562-574.
LI M Y, SUN X J, LI S N, et al. Advances on inorganic hydrochemistry of glacial meltwater runoff in the Qinghai-Tibet Plateau and its surrounding areas[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 562-574 (in Chinese).
|
[15] |
张正勇, 何新林, 刘琳, 等. 中国天山冰川生态服务功能及价值评估[J]. 地理学报, 2018, 73(5): 856-867.
ZHANG Z Y, HE X L, LIU L, et al. Ecological service functions and value estimation of glaciers in the Tianshan Mountains, China[J]. Acta Geographica Sinica, 2018, 73(5): 856-867 (in Chinese).
|
[16] |
牟建新, 李忠勤, 张慧, 等. 中国西部大陆性冰川与海洋性冰川物质平衡变化及其对气候响应: 以乌源1号冰川和帕隆94号冰川为例[J]. 干旱区地理, 2019, 42(1): 20-28.
MU J X, LI Z Q, ZHANG H, et al. Mass balance variation of continental glacier and temperate glacier and their response to climate change in Western China: Taking Urumqi Glacier No. 1 and Parlung No. 94 Glacier as examples[J]. Arid Land Geography, 2019, 42(1): 20-28 (in Chinese).
|
[17] |
吴彦良. 金属矿山粉尘防治技术及研究现状[J]. 世界有色金属, 2021(9): 197-198.
WU Y L. Dust control technology and research status of metal mines[J]. World Nonferrous Metals, 2021(9): 197-198 (in Chinese).
|
[18] |
汤万钧. 露天煤矿粉尘分布和运移机理研究[D]. 徐州: 中国矿业大学, 2018.
TANG W J. Study on dust distribution and diffusion mechanism in open pit coal mine[D]. Xuzhou: China University of Mining and Technology, 2018 (in Chinese).
|
[19] |
KUTUZOV S, SHAHGEDANOVA M, KRUPSKAYA V, et al. Optical, geochemical and mineralogical characteristics of light-absorbing impurities deposited on djankuat glacier in the Caucasus Mountains[J]. Water, 2021, 13(21): 2993. doi: 10.3390/w13212993
|
[20] |
罗怀廷, 时旭阳, 刘宇, 等. 露天矿山非扰动区粉尘治理试验研究[J]. 煤炭工程, 2020, 52(增刊2): 91-95.
LUO H T, SHI X Y, LIU Y, et al. Dust control test in undisturbed area of open-pit mine[J]. Coal Engineering, 2020, 52(Sup 2): 91-95 (in Chinese).
|
[21] |
王小玉. 矿山粉尘的危险性评估及有效防治策略研究[J]. 世界有色金属, 2023(6): 199-201.
WANG X Y. Study on the risk assessment and effective prevention and control strategies of mine dust[J]. World Nonferrous Metals, 2023(6): 199-201 (in Chinese).
|
[22] |
蒋仲安, 曾发镔, 王亚朋. 我国金属矿山采运过程典型作业场所粉尘污染控制研究现状与展望[J]. 金属矿山, 2021(1): 135-153.
JIANG Z A, ZENG F B, WANG Y P. Research status and prospect of dust pollution control in typical working places during mining and transportation of metal mines in China[J]. Metal Mine, 2021(1): 135-153 (in Chinese).
|
[23] |
李刚, 吴将有, 金龙哲, 等. 我国金属矿山粉尘防治技术研究现状及展望[J]. 金属矿山, 2021(1): 154-167.
LI G, WU J Y, JIN L Z, et al. Study status and prospect of dust control technology for metal mines in China[J]. Metal Mine, 2021(1): 154-167 (in Chinese).
|
[24] |
龚亮. 矿山土壤重金属污染特征及其潜在生态风险评价[J]. 世界有色金属, 2023(1): 226-228.
GONG L. Characteristics of heavy metal pollution in mine soil and its potential ecological risk assessment[J]. World Nonferrous Metals, 2023(1): 226-228 (in Chinese).
|
[25] |
李星. 矿山重金属废渣场地污染问题及治理方法[J]. 低碳世界, 2022, 12(12): 34-36.
LI X. Pollution problems and treatment methods of mine heavy metal waste[J]. Low Carbon World, 2022, 12(12): 34-36 (in Chinese).
|
[26] |
王先华. 金属矿山污染土壤的重金属迁移特性研究[J]. 节能与环保, 2021(1): 61-62.
WANG X H. Migration characteristics of heavy metals in contaminated soil of metal mines[J]. Energy Conservation & Environmental Protection, 2021(1): 61-62 (in Chinese).
|
[27] |
闫海祥, 贺腾. 金属矿山开采中重金属污染对生态环境的影响[J]. 世界有色金属, 2022(14): 57-59.
YAN H X, HE T. Influence of heavy metal pollution on ecological environment in metal mining[J]. World Nonferrous Metals, 2022(14): 57-59 (in Chinese).
|
[28] |
SHAHAN M R, SEAMAN C E, BECK T W, et al. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport[J]. Mining Engineering, 2017, 69(9): 61-66. doi: 10.19150/me.7746
|
[29] |
JOHANN-ESSEX V, KELES C, REZAEE M, et al. Respirable coal mine dust characteristics in samples collected in central and northern Appalachia[J]. International Journal of Coal Geology, 2017, 182: 85-93. doi: 10.1016/j.coal.2017.09.010
|
[30] |
ALEXANDER K, BIAGIO D M, ROBERTO G, et al. Retrieval of dust properties from spectral snow reflectance measurements[J]. Frontiers in Environmental Science, 2021, 9: 810-821.
|
[31] |
符浩南, 王孝东, 兰林, 等. 某铅锌矿巷道型采场粉尘扩散特性研究[J]. 有色金属工程, 2021, 11(6): 118-125,145.
FU H N, WANG X D, LAN L, et al. Research on dust diffusion characteristics of roadway type stope in a lead-zinc mine[J]. Nonferrous Metals Engineering, 2021, 11(6): 118-125,145 (in Chinese).
|
[32] |
葛宇. 综掘工作面长压短抽通风粉尘扩散特征分析[J]. 江西煤炭科技, 2023(3): 156-158.
GE Y. Analysis on dust diffusion characteristics of long pressure short extraction ventilation in fully mechanized excavation face[J]. Jiangxi Coal Science & Technology, 2023(3): 156-158 (in Chinese).
|
[33] |
李博. 煤峪口采煤面粉尘扩散特征和降尘效果实践[J]. 煤, 2023, 32(8): 99-101.
LI B. Dust diffusion characteristics and dust suppression effect practice in Meiyukou coal face[J]. Coal, 2023, 32(8): 99-101 (in Chinese).
|
[34] |
那喜双. 回收大巷保安煤柱综采面粉尘扩散特性研究[J]. 煤, 2022, 31(11): 62-63,83.
NA X S. Study on dust diffusion characteristics in fully mechanized mining face of recovery gateway in Taitou Qianwan mine[J]. Coal, 2022, 31(11): 62-63,83 (in Chinese).
|
[35] |
滕海旭. 煤矿井塔内粉尘的扩散与分布特性的研究[D]. 徐州: 中国矿业大学, 2022.
TENG H X. Study on the diffusion and distribution characteristics of dust in the coal shaft tower[D]. Xuzhou: China University of Mining and Technology, 2022 (in Chinese).
|
[36] |
Ebelia Manda(艾比丽). 基于气候影响的露天矿粉尘浓度和扩散机理研究 [D]. 徐州: 中国矿业大学, 2022.
EBELIA M. Study on dust concentration and diffusion mechanism of open pit Mine based on climate influence [D]. Xuzhou: China University of Mining and Technology, 2022 (in Chinese).
|
[37] |
张嘉旺, 陈忠海, 刘龙飞, 等. 掘进面通风降温与粉尘扩散数值模拟研究[J]. 河北建筑工程学院学报, 2021, 39(4): 98-102.
ZHANG J W, CHEN Z H, LIU L F, et al. Numerical simulation of ventilation cooling and dust diffusion in heading face[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2021, 39(4): 98-102 (in Chinese).
|
[38] |
张国梁, 蒋仲安, 陈记合, 等. 打磨作业过程金属粉尘扩散特性及集尘罩除尘效果[J]. 中南大学学报(自然科学版), 2021, 52(11): 3813-3825.
ZHANG G L, JIANG Z A, CHEN J H, et al. Metal dust diffusion characteristics and dust hood effect during grinding operation[J]. Journal of Central South University (Science and Technology), 2021, 52(11): 3813-3825 (in Chinese).
|
[39] |
沈斌, 周子涵, 刘新蕾, 等. 煤矿三维可视化粉尘污染扩散规律研究[J]. 煤, 2020, 29(10): 1-4,24.
SHEN B, ZHOU Z H, LIU X L, et al. Research on three-dimensional visualization of dust pollution diffusion in coal mine[J]. Coal, 2020, 29(10): 1-4,24 (in Chinese).
|
[40] |
钱松. 基于FLUENT的粉尘扩散分析[J]. 电气防爆, 2019(2): 12-14,18.
QIAN S. Dust diffusion analysis based on FLUENT[J]. Electric Explosion Protection, 2019(2): 12-14,18 (in Chinese).
|
[41] |
卢洁, 雷少刚. 露天煤矿粉尘环境影响及其扩散规律研究综述[J]. 煤矿安全, 2017, 48(8): 231-234.
LU J, LEI S G. Research overview of effect of dust on environment and its diffusion laws in open-pit coal mine[J]. Safety in Coal Mines, 2017, 48(8): 231-234 (in Chinese).
|
[42] |
郭帅伟, 邹树梁, 唐德文, 等. 开放空间中自由下落粉尘随水平风流运移扩散的数值模拟[J]. 安全与环境学报, 2015, 15(2): 266-271.
GUO S W, ZOU S L, TANG D W, et al. Numerical simulation of free-floating dust migration and diffusion in a horizontal wind in the open space[J]. Journal of Safety and Environment, 2015, 15(2): 266-271 (in Chinese).
|
[43] |
阿布拉·吐合提. 中亚咸海干涸湖床粉尘扩散的时空特征、影响因素及其健康效应[D]. 乌鲁木齐: 新疆大学, 2021.
TOHOTI A. Spatial-temporal potential transportation characteristics, influence factors and health effects of dust from the playa of the Aral Sea, central Asia[D]. Urumqi: Xinjiang University, 2021 (in Chinese).
|
[44] |
贾兰, 宋子岭, 赵光. 大高差溜槽粉尘颗粒扩散运动规律数值模拟[J]. 环境工程学报, 2016, 10(3): 1406-1411.
JIA L, SONG Z L, ZHAO G. Numerical simulation of dust particle diffusion elevation movement during a process of large height difference chut[J]. Chinese Journal of Environmental Engineering, 2016, 10(3): 1406-1411 (in Chinese).
|
[45] |
WANG H, CHENG W M, SUN B, et al. The impacts of the axial-to-radial airflow quantity ratio and suction distance on air curtain dust control in a fully mechanized coal face[J]. Environmental Science and Pollution Research, 2018, 25(8): 7808-7822. doi: 10.1007/s11356-017-1106-8
|
[46] |
TANG W J, CAI Q X. Dust distribution in open-pit mines based on monitoring data and fluent simulation[J]. Environmental Monitoring and Assessment, 2018, 190(11): 632. doi: 10.1007/s10661-018-7004-9
|
[47] |
GUO L D, NIE W, YIN S, et al. The dust diffusion modeling and determination of optimal airflow rate for removing the dust generated during mine tunneling[J]. Building and Environment, 2020, 178: 106846. doi: 10.1016/j.buildenv.2020.106846
|
[48] |
HU S Y, GAO Y, FENG G R, et al. Characteristics of dust distributions and dust control measures around road-header drivers in mining excavation roadways[J]. Particuology, 2021, 58: 268-275. doi: 10.1016/j.partic.2021.03.017
|
[49] |
张明浩, 赵廷宁, 肖辉杰. 内蒙古乌海粉尘浓度时空分布及影响因素探析[J]. 地学前缘, 2021, 28(4): 118-130.
ZHANG M H, ZHAO T N, XIAO H J. Temporospatial distribution and influencing factor analysis of dust concentration in Wuhai, Inner Mongolia[J]. Earth Science Frontiers, 2021, 28(4): 118-130 (in Chinese).
|
[50] |
ZHANG Z Y, XU X Y, SONG Y Z, et al. Study on the ablation of the glacier covered by mineral dust in alpine regions[J]. Water, 2022, 14(13): 1982. doi: 10.3390/w14131982
|
[51] |
KIM B Y, LEE S K, JO Y D, et al. Study on Simulation of Dust Diffusion at Open Pit Mines [J]. Tunnel and Underground Space , 1998, 8(3):194-199.
|
[52] |
TOMINAGA R T, TAKAHASHI S Z, INUTSUKA S I. Revised description of dust diffusion and a new instability creating multiple rings in protoplanetary disks[J]. The Astrophysical Journal Letters, 2019, 881(1): 53. doi: 10.3847/1538-4357/ab25ea
|
[53] |
LIU F, HONG Y. Applications of the dust diffusion model method in China[J]. Journal of Aerosol Science, 1996, 27: S93-S94. doi: 10.1016/0021-8502(96)00119-X
|
[54] |
宝银昙, 田坤, 陈德勇, 等. 基于同位素追踪的煤矿通风粉尘含量变化模拟研究[J]. 环境科学与管理, 2020, 45(9): 90-93.
BAO Y T, TIAN K, CHEN D Y, et al. Simulation analysis of dust content change in coal mine ventilation based on isotope tracing[J]. Environmental Science and Management, 2020, 45(9): 90-93 (in Chinese).
|
[55] |
方英, 赵琼, 台培东, 等. 芒颖大麦草对菱镁矿粉尘污染的生态适应性[J]. 应用生态学报, 2012, 23(12): 3474-3478.
FANG Y, ZHAO Q, TAI P D, et al. Ecological adaptability of Hordeum jubatum to magnesite dust[J]. Chinese Journal of Applied Ecology, 2012, 23(12): 3474-3478 (in Chinese).
|
[56] |
蒋仲安, 陈雅, 王佩. 双尘源耦合下呼吸性粉尘扩散的紊流系数求解[J]. 哈尔滨工业大学学报, 2017, 49(8): 129-134.
JIANG Z A, CHEN Y, WANG P. Solution of turbulence coefficient in the diffusion of respirable dust under the coupling of two dust sources[J]. Journal of Harbin Institute of Technology, 2017, 49(8): 129-134 (in Chinese).
|
[57] |
陶子夜, 舒晓春, 杨红刚, 等. 面源爆破拆除工程粉尘扩散模型研究[J]. 爆破, 2017, 34(2): 144-147.
TAO Z Y, SHU X C, YANG H G, et al. Research of dust diffusion model of non-point source demolition blasting[J]. Blasting, 2017, 34(2): 144-147 (in Chinese).
|
[58] |
李晓健, 贾敏涛, 任甲泽, 等. 巷道爆破有毒有害气体及粉尘扩散规律探究[J]. 现代矿业, 2021, 37(8): 200-203.
LI X J, JIA M T, REN J Z, et al. Study on diffusion law of blasting toxic and harmful gas and dust in roadway blasting[J]. Modern Mining, 2021, 37(8): 200-203 (in Chinese).
|
[59] |
李军胜. 基于Realizable k-ε模型煤巷综掘工作面粉尘运移规律研究[J]. 陕西煤炭, 2021, 40(增刊2): 6-10.
LI J S. Research on the dust migration law in fully mechanized excavation face based on Realizable k-ε model[J]. Shaanxi Coal, 2021, 40(Sup 2): 6-10 (in Chinese).
|
[60] |
GLACIOLOGY; Reports from RWTH Aachen University Advance Knowledge in Glaciology (Impact of supraglacial deposits of tephra from Grimsvotn volcano, Iceland, on glacier ablation) [J]. Science Letter, 2016.
|
[61] |
MÖLLER R, MÖLLER M, KUKLA P A, et al. Impact of supraglacial deposits of tephra from Grímsvötn volcano, Iceland, on glacier ablation[J]. Journal of Glaciology, 2016, 62(235): 933-943. doi: 10.1017/jog.2016.82
|
[62] |
尤晓妮, 王长青, 王莉霞, 等. 乌鲁木齐河源区颗粒有机碳的产出输移及冰川消融的影响机制研究[Z]. 天水: 天水师范学院, 2021.
YOU X N, WANG C Q, WANG L X, et al. Study on the production and transport of particulate organic carbon and the influencing mechanism of glacier ablation in Urumqi River source area[Z]. Tianshui: Tianshui Normal University, 2021 (in Chinese).
|
[63] |
ZHANG Z Y, SONG Y Z, XU X Y, et al. Enhanced effect of mining dust diffusion on melting of the adjacent glacier: A case study in Xinjiang, China[J]. Water, 2023, 15(2): 224. doi: 10.3390/w15020224
|
[64] |
许泰, 鄂崇毅. 高原高寒露天煤矿区土壤重金属污染及潜在生态风险评价[J]. 广西科学, 2022, 29(3): 584-594.
XU T, E C Y. Soil heavy metal pollution and potential ecological risk assessment in plateau alpine open-pit coal mining area[J]. Guangxi Sciences, 2022, 29(3): 584-594 (in Chinese).
|
[65] |
刘瑞平, 徐友宁, 权国苍, 等. 西北地区高寒生态脆弱区典型金属矿山地质环境问题与恢复治理关键技术研究: 德尔尼铜矿山[J]. 地质论评, 2015, 61(增刊1): 87-88.
LIU R P, XU Y N, QUAN G C, et al. Study on geological environment problems and key technologies of restoration and management of typical metal mines in cold and fragile ecological areas in northwest China—Delny copper mine[J]. Geological Review, 2015, 61(Sup 1): 87-88 (in Chinese).
|
[66] |
倪明霞, 段峥嵘, 夏建新. 新疆南疆周边高山冰川融化及其未来水资源安全风险[J]. 山地学报, 2022, 40(3): 329-342.
NI M X, DUAN Z R, XIA J X. Melting of mountain glacier and its risk to future water resources in southern Xinjiang, China[J]. Mountain Research, 2022, 40(3): 329-342 (in Chinese).
|
[67] |
王欣, 丁永建, 张勇. 冰川融水对山地冰冻圈冰湖水文效应的影响[J]. 湖泊科学, 2019, 31(3): 609-620. doi: 10.18307/2019.0301
WANG X, DING Y J, ZHANG Y. The influence of glacier meltwater on the hydrological effect of glacial lakes in Mountain Cryosphere[J]. Journal of Lake Sciences, 2019, 31(3): 609-620 (in Chinese). doi: 10.18307/2019.0301
|
[68] |
张九天, 何霄嘉, 上官冬辉, 等. 冰川加剧消融对我国西北干旱区的影响及其适应对策[J]. 冰川冻土, 2012, 34(4): 848-854.
ZHANG J T, HE X J, SHANGGUAN D H, et al. Impact of intensive glacier ablation on arid regions of northwest China and its countermeasure[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 848-854 (in Chinese).
|
[69] |
文宇博. 广西岩溶地质高背景地区土壤重金属的富集机制和生物有效性研究[D]. 南京: 南京大学, 2020.
WEN Y B. Enrichment mechanism and bioavailability of heavy metals in soils with high geochemical background in the Karst region of Guangxi Province, China[D]. Nanjing: Nanjing University, 2020 (in Chinese).
|
[70] |
戎念杭, 黎军英, 洪健. 几种重金属元素在动植物细胞内积累的X-射线能谱分析[J]. 电子显微学报, 2014, 33(6): 564-569.
RONG N H, LI J Y, HONG J. X-ray energy spectrum analysis of heavy metals distribution in the cells of animal and plants[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(6): 564-569 (in Chinese).
|
[71] |
白宇明, 李永利, 周文辉, 等. 典型工业城市土壤重金属元素形态特征及生态风险评估[J]. 岩矿测试, 2022, 41(4): 632-641.
BAI Y M, LI Y L, ZHOU W H, et al. Speciation characteristics and ecological risk assessment of heavy metal elements in soils of typical industrial city[J]. Rock and Mineral Analysis, 2022, 41(4): 632-641 (in Chinese).
|
[72] |
茅思雨, 李百球, 樊燕, 等. 石灰岩山地淡竹林“岩石-土壤-植物”系统的重金属元素迁聚规律[J]. 西南农业学报, 2019, 32(4): 872-877.
MAO S Y, LI B Q, FAN Y, et al. Transportation and accumulation of heavy metals in rock-soil-plant system of Phyllostachys glauca forest in limestone mountain[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(4): 872-877 (in Chinese).
|
[73] |
周瑾艳, 保志娟, 杨亦, 等. 生物体中重金属元素分析方法的研究进展[J]. 中国测试, 2012, 38(1): 56-59.
ZHOU J Y, BAO Z J, YANG Y, et al. Progress in determination methods of heavy metals in biological samples[J]. China Measurement & Test, 2012, 38(1): 56-59 (in Chinese).
|
[74] |
赵舒婷. 工业企业重金属污染防控区域划分及政策研究[D]. 西安: 西安建筑科技大学, 2014.
ZHAO S T. Industrial enterprises heavy metal pollution prevention zoning control of and policy research[D]. Xi'an: Xi'an University of Architecture and Technology, 2014 (in Chinese).
|
[75] |
田祎, 叶旌, 王玉晶, 等. pH值对重金属元素形态的影响及污染防治建议[C]//第十届重金属污染防治技术及风险评价研讨会论文集. 长沙, 2020: 88-90.
WANG H F, TIAN Y, YE J, et al. Effects of pH value on the form of heavy metals and pollution control suggestions [C]//Proceedings of the 10th Symposium on Heavy Metal Pollution Control Technology and Risk Assessment, Chinese Society of Environmental Sciences, Central South University, Central South University of Forestry and Technology, Hunan Agricultural University, 2020: 88-90 (in Chinese).
|
[76] |
张兆永, 吉力力·阿不都外力, 姜逢清, 等. 天山地表水重金属的赋存特征和来源分析[J]. 中国环境科学, 2012, 32(10): 1799-1806.
ZHAO Z Y, ABODUWAILI J L L, JIANG F Q, et al. Contents and sources of heavy metals in surface water in the Tianshan Mountain[J]. China Environmental Science, 2012, 32(10): 1799-1806 (in Chinese).
|
[77] |
COWIE L L, SONGAILA A. Heavy-element enrichment in low-density regions of the intergalactic medium[J]. Nature, 1998, 394(6688): 44-46. doi: 10.1038/27845
|
[78] |
AMMAR A A, SYAFEI A D, SANTOSO M, et al. Analysis of the characteristics of heavy metal elements in soil around the smelting area of pasuruan industrial estate, Indonesia[J]. IOP Conference Series:Earth and Environmental Science, 2022, 1013(1): 012013. doi: 10.1088/1755-1315/1013/1/012013
|
[79] |
HUSSAIN M, JAMIR L, SINGH M R. Assessment of physico-chemical parameters and trace heavy metal elements from different sources of water in and around institutional campus of Lumami, Nagaland University, India[J]. Applied Water Science, 2021, 11(4): 1-21.
|
[80] |
张沁瑞, 李欢, 邓宇飞, 等. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
ZHANG Q R, LI H, DENG Y F, et al. Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil[J]. Geophysical and Geochemical Exploration, 2022, 46(2): 490-501 (in Chinese).
|
[81] |
王硕, 罗杰, 蔡立梅, 等. 土壤-水稻系统中重金属的富集特征及对土壤元素标准限的判定[J]. 环境化学, 2018, 37(7): 1508-1514. doi: 10.7524/j.issn.0254-6108.2017112904
WANG S, LUO J, CAI L M, et al. Enrichment characteristics of heavy metals in soil-rice system and determination of the standard range of soil elements[J]. Environmental Chemistry, 2018, 37(7): 1508-1514 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017112904
|
[82] |
余丹. 吉林黑土区耕地土壤重金属元素转化富集效率及其对耕地利用的制约[D]. 长春: 吉林大学, 2019.
YU D. Biotransformation and bioaccumulation of soil heavy metals and their constraints on the cultivated land use in the black soil region of Jilin Province[D]. Changchun: Jilin University, 2019 (in Chinese).
|
[83] |
张开军, 魏迎春, 徐友宁. 小秦岭某金矿区土壤-农作物重金属元素富集规律[J]. 地质通报, 2015, 34(11): 2018-2023.
ZHANG K J, WEI Y C, XU Y N. The discussion on heavy metal accumulation regularity in the soil and crop of the Xiaoqinling gold mining area[J]. Geological Bulletin of China, 2015, 34(11): 2018-2023 (in Chinese).
|
[84] |
汪碧玲, 陈碧珊, 刘发耀, 等. 雷州半岛土壤-水果作物系统重金属元素潜在生态风险评价及富集特征研究[J]. 生态环境学报, 2021, 30(5): 1076-1083.
WANG B L, CHEN B S, LIU F Y, et al. Potential risk assessment and enrichment characteristics of heavy metals in soil fruit crop system of Leizhou peninsula[J]. Ecology and Environmental Sciences, 2021, 30(5): 1076-1083 (in Chinese).
|
[85] |
付蓉洁, 辛存林, 于奭, 等. 石期河西南子流域地下水重金属来源解析及健康风险评价[J]. 环境科学, 2023, 44(2): 796-806.
FU R J, XIN C L, YU S, et al. Analysis of heavy metal sources in groundwater and assessment of health risks: An example from the southwest sub-basin of the Shiqi River[J]. Environmental Science, 2023, 44(2): 796-806 (in Chinese).
|
[86] |
张时珍. 某地下水水源地重金属元素健康风险研究[J]. 淮海工学院学报(自然科学版), 2017, 26(2): 30-33.
ZHANG S Z. Study on health risk of heavy metal elements in a groundwater source[J]. Journal of Huaihai Institute of Technology (Natural Science Edition), 2017, 26(2): 30-33 (in Chinese).
|
[87] |
李全莲, 张成龙, 武小波, 等. 中国西部冰川冰尘中重金属元素的地球化学特征[J]. 地球化学, 2015, 44(3): 238-244.
LI Q L, ZHANG C L, WU X B, et al. Heavy metal geochemistry characteristics of cryoconite in glaciers in Western China[J]. Geochimica, 2015, 44(3): 238-244 (in Chinese).
|
[88] |
刘亚军, 张玉兰, 康世昌, 等. 青藏高原东南部冰川雪冰重金属元素特征[J]. 冰川冻土, 2017, 39(6): 1200-1211.
LIU Y J, ZHANG Y L, KANG S C, et al. Characteristics of heavy metal elements deposited on glaciers in the southeastern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2017, 39(6): 1200-1211 (in Chinese).
|
[89] |
孔利锋, 陈勇, 张琳, 等. 新疆准东煤矿开采区域植物对重金属元素富集能力的探讨[J]. 新疆环境保护, 2018, 40(1): 42-46.
KONG L F, CHEN Y, ZHANG L, et al. Study on the accumulate capacity of plant on heavy metal in the mining area of Zhundong coal mine in Xinjiang[J]. Environmental Protection of Xinjiang, 2018, 40(1): 42-46 (in Chinese).
|
[90] |
王文祎, 杨瑶珺, 吕晓娜, 等. 关于水蛭药材重金属元素富集原因的研究[J]. 西部中医药, 2016, 29(8): 29-32.
WANG W Y, YANG Y J, LYU X N, et al. Study on the reason of enrichment of heavy metal elements of medicinal leech[J]. Western Journal of Traditional Chinese Medicine, 2016, 29(8): 29-32 (in Chinese).
|
[91] |
王哲, 周铜, 赵莹晨, 等. 内蒙古白云鄂博矿区优势植物重金属和稀土元素富集特征[J]. 中国稀土学报, 2022, 40(3): 512-522.
WANG Z, ZHOU T, ZHAO Y C, et al. Enrichment characteristics of heavy metals and rare earth elements in dominant plants in Bayan Obo mining area of Inner Mongolia[J]. Journal of the Chinese Society of Rare Earths, 2022, 40(3): 512-522 (in Chinese).
|
[92] |
佘新松, 甘卓亭, 姚婷, 等. 安茶产区典型茶园土壤-茶树系统重金属元素富集与分配[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 102-110.
SHE X S, GAN Z T, YAO T, et al. Bioconcentration and distribution of heavy metal elements in the soil-tea plant systems of An-tea producing areas[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(4): 102-110 (in Chinese).
|
[93] |
赵泽阳. 海南岛东部不同土地利用方式土壤重金属元素富集特征及其影响因素[D]. 海口: 海南师范大学, 2020.
ZHAO Z Y. Enrichment characteristics and influencing factors of heavy metals in different agricultural land use types in eastern Hainan Island[D]. Haikou: Hainan Normal University, 2020 (in Chinese).
|
[94] |
孙晓, 钱枫, 魏新鲜, 等. 添加CaO对燃煤重金属元素富集效果的影响[J]. 化工环保, 2016, 36(2): 205-210.
SUN X, QIAN F, WEI X X, et al. Effects of CaO on enrichment of heavy metal elements in coal ashes[J]. Environmental Protection of Chemical Industry, 2016, 36(2): 205-210 (in Chinese).
|
[95] |
陈莲. 重金属元素在互花米草盐沼湿地的富集、迁移及循环规律[D]. 南京: 南京大学, 2015.
CHEN L. The regular pattern of enrichment, migration and circulation of heavy metals in Spartina alterniflora marsh[D]. Nanjing: Nanjing University, 2015 (in Chinese).
|
[96] |
周健南. 四类锅具在模拟酸性食品烹饪条件下的重金属元素迁移规律研究[D]. 沈阳: 沈阳农业大学, 2022.
ZHOU J N. Study on four types of pots in the migration law of heavy metal elements under simulated acid food cooking conditions[D]. Shenyang: Shenyang Agricultural University, 2022 (in Chinese).
|
[97] |
肖蓓, 王正海, 申晋利, 等. 内蒙古钱家店铀矿区土壤-植物中重金属元素迁移富集特征[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 625-634.
XIAO B, WANG Z H, SHEN J L, et al. Migration and enrichment characteristics of heavy metal elements in soil-plant system in Qianjiadian uranium mining area of Inner Mongolia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 625-634 (in Chinese).
|
[98] |
李政, 张珩琳, 范书伶, 等. 金属元素与环境微生物的互作关系研究进展[J]. 应用与环境生物学报, 2020, 26(4): 836-843.
LI Z, ZHANG H L, FAN S L, et al. Interactions between metals and environmental microbes[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4): 836-843 (in Chinese).
|
[99] |
栾常慧. 人工电场下土壤中重金属元素迁移规律研究[D]. 长春: 吉林大学, 2022.
LUAN C H. Research on migration law of heavy metal elements in soil under artificial electric field[D]. Changchun: Jilin University, 2022 (in Chinese).
|
[100] |
夏伟, 吴冬妹, 袁知洋. 土壤—农作物系统中重金属元素迁移转化规律研究: 以湖北宣恩县为例[J]. 资源环境与工程, 2018, 32(4): 563-568.
XIA W, WU D M, YUAN Z Y. Study on the migration and transformation law of heavy metals in soil-crop system[J]. Resources Environment & Engineering, 2018, 32(4): 563-568 (in Chinese).
|
[101] |
万丽娟, 孟宝航, 郑坤. 浅谈重金属元素在土壤中的迁移及黏土矿物对其修复作用[J]. 广东微量元素科学, 2015, 22(2): 56-59.
WAN L J, MENG B H, ZHENG K. Shallowly discussed migration of the heavy metals in soil and the repair effect of clay minerals[J]. Guangdong Trace Elements Science, 2015, 22(2): 56-59 (in Chinese).
|
[102] |
乔鹏炜, 周小勇, 杨军, 等. 土壤重金属元素迁移模拟方法在矿集区适用性比较[J]. 地质通报, 2014, 33(8): 1121-1131.
QIAO P W, ZHOU X Y, YANG J, et al. The comparison of simulation methods for soil heavy metal movement in the ore concentration area[J]. Geological Bulletin of China, 2014, 33(8): 1121-1131 (in Chinese).
|