[1] LIU M J, XIAO C L, LIANG X J, et al. Response of groundwater chemical characteristics to land use types and health risk assessment of nitrate in semi-arid areas: A case study of Shuangliao City, Northeast China[J]. Ecotoxicology and Environmental Safety, 2022, 236: 113473. doi: 10.1016/j.ecoenv.2022.113473
[2] 童辉, 高宗军, 高法生, 等. 沂河流域地下水水化学特征及水质评价[J]. 环境化学, 2021, 40(11): 3443-3454. doi: 10.7524/j.issn.0254-6108.2020122802 TONG H, GAO Z J, GAO F S, et al. Hydrochemical characteristics and water quality evaluation of groundwater in the west of Yi River Basin[J]. Environmental Chemistry, 2021, 40(11): 3443-3454 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122802
[3] BUZZACOTT P, SKRZYPEK G. Thermal anomaly and water origin in Weebubbie Cave, Nullarbor Karst Plain, Australia[J]. Journal of Hydrology: Regional Studies, 2021, 34: 100793. doi: 10.1016/j.ejrh.2021.100793
[4] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价[J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area[J]. Environmental Chemistry, 2019, 38(9): 2055-2066 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[5] 宋梦媛, 李忠勤, 王飞腾, 等. 新疆吉木乃诸河水体氢氧同位素和水化学特征[J]. 环境化学, 2020, 39(7): 1809-1820. doi: 10.7524/j.issn.0254-6108.2019050402 SONG M Y, LI Z Q, WANG F T, et al. Hydrogen and oxygen isotopes and hydrochemical parameters of water samples from the Jimunai River Basin, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1809-1820 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019050402
[6] 孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学, 2019, 38(11): 2601-2609. doi: 10.7524/j.issn.0254-6108.2018121002 SUN Y, ZHOU J L, WEI X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601-2609 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018121002
[7] 高宗军, 刘久潭, 李颖智, 等. 拉萨河谷地区孔隙地下水水化学特征及水文地球化学模拟[J]. 山东科技大学学报(自然科学版), 2020, 39(1): 1-10. GAO Z J, LIU J T, LI Y Z, et al. Hydrochemical characteristics and hydrogeochemical simulation of pore groundwater in Lhasa valley area[J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1): 1-10 (in Chinese).
[8] 孙丰英. 淮南煤田岩溶地下水化学特征及形成机制研究[D]. 淮南: 安徽理工大学, 2021. SUN F Y. Study on hydrochemical characteristics and formation mechanism of Karst groundwater in Huainan Coalfield[D]. Huainan: Anhui University of Science & Technology, 2021 (in Chinese).
[9] 朱锡芬. 乌兰布和沙漠地下水补给来源及演化规律[D]. 兰州: 兰州大学, 2011. ZHU X F. Study on recharge and evolution of groundwater in ulan buh desert[D]. Lanzhou: Lanzhou University, 2011 (in Chinese).
[10] 夏日元, 卢海平, 曹建文, 等. 南方岩溶区地下水资源特征与水资源保障对策[J]. 中国地质, 2022, 49(4): 1139-1153. doi: 10.12029/gc20220408 XIA R Y, LU H P, CAO J W, et al. Characteristics of groundwater resources of Karst areas in the Southern China and water resources guarantee countermeasures[J]. Geology in China, 2022, 49(4): 1139-1153 (in Chinese). doi: 10.12029/gc20220408
[11] 刘长礼, 王秀艳, 吕敦玉, 等. 中国南方岩溶地下水面源污染风险评价及防控对策[J]. 地球学报, 2017, 38(6): 910-918. doi: 10.3975/cagsb.2017.06.06 LIU C L, WANG X Y, LÜ D Y, et al. Risk assessment and control countermeasures of Southern China’s Karst groundwater areal source pollution[J]. Acta Geoscientica Sinica, 2017, 38(6): 910-918 (in Chinese). doi: 10.3975/cagsb.2017.06.06
[12] LECOMTE K L, PASQUINI A I, DEPETRIS P J. Mineral Weathering in a Semiarid Mountain River: Its assessment through PHREEQC inverse modeling[J]. Aquatic Geochemistry, 2005, 11(2): 173-194. doi: 10.1007/s10498-004-3523-9
[13] 贺灵, 曾道明, 魏华玲, 等. 赣南脐橙种植区典型果园土壤重金属元素评价[J]. 湖北农业科学, 2014, 53(2): 292-297. doi: 10.3969/j.issn.0439-8114.2014.02.013 HE L, ZENG D M, WEI H L, et al. Evaluating heavy metals of navel orange orchard soil in Gannan area[J]. Hubei Agricultural Sciences, 2014, 53(2): 292-297 (in Chinese). doi: 10.3969/j.issn.0439-8114.2014.02.013
[14] 易雨辰, 刘海香. 赣州市兴国县蕉溪村饮用水现状及解决建议[J]. 城市地理, 2017(20): 241. doi: 10.3969/j.issn.1674-2508.2017.20.192 YI Y C, LIU H X. Present situation of drinking water in Jiaoxi Village, Xingguo County, Ganzhou city and its solution suggestions[J]. Global City Geography, 2017(20): 241 (in Chinese). doi: 10.3969/j.issn.1674-2508.2017.20.192
[15] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素[J]. 环境科学, 2017, 38(11): 4537-4545. doi: 10.13227/j.hjkx.201704051 ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the niyang river basin[J]. Environmental Science, 2017, 38(11): 4537-4545 (in Chinese). doi: 10.13227/j.hjkx.201704051
[16] NAGARAJU A, BALAJI E, SUN L H, et al. Processes controlling groundwater chemistry from mulakalacheruvu area, chittoor district, Andhra pradesh, south India: A statistical approach based on hydrochemistry[J]. Journal of the Geological Society of India, 2018, 91(4): 425-430. doi: 10.1007/s12594-018-0875-0
[17] GIBBS R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088
[18] 李学先. 酸性矿山废水影响下喀斯特流域水文地球化学特征及演化规律研究[D]. 贵阳: 贵州大学, 2018. LI X X. Study on hydrogeochemical characteristics and evolution rules of Karst Basin under the effects of acid mine waste water[D]. Guiyang: Guizhou University, 2018 (in Chinese).
[19] XIAO J, JIN Z D, ZHANG F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China[J]. Journal of Geochemical Exploration, 2015, 159: 252-261. doi: 10.1016/j.gexplo.2015.09.018
[20] 郑涛, 焦团理, 胡波, 等. 涡河流域中部地区地下水化学特征及其成因分析[J]. 环境科学, 2021, 42(2): 766-775. ZHENG T, JIAO T L, HU B, et al. Hydrochemical characteristics and origin of groundwater in the central guohe river basin[J]. Environmental Science, 2021, 42(2): 766-775 (in Chinese).
[21] 李艳利, 孙伟, 杨梓睿. 太子河流域中游地区河流硝酸盐来源及迁移转化过程[J]. 环境科学, 2017, 38(12): 5039-5046. doi: 10.13227/j.hjkx.201704238 LI Y L, SUN W, YANG Z R. Identification of nitrate sources and transformation processes in midstream areas: A case in the taizi river basin[J]. Environmental Science, 2017, 38(12): 5039-5046 (in Chinese). doi: 10.13227/j.hjkx.201704238
[22] LIU F, ZOU J W, LIU J R, et al. Factors controlling groundwater chemical evolution with the impact of reduced exploitation[J]. CATENA, 2022, 214: 106261. doi: 10.1016/j.catena.2022.106261
[23] JIA H, QU W G, REN W H, et al. Impacts of chemical weathering and human perturbations on dissolved loads of the Wei River, the Yellow River Catchment[J]. Journal of Hydrology, 2021, 603: 126950. doi: 10.1016/j.jhydrol.2021.126950
[24] LI S Y, LU X X, BUSH R T. Chemical weathering and CO2 consumption in the Lower Mekong River[J]. Science of the Total Environment, 2014, 472: 162-177. doi: 10.1016/j.scitotenv.2013.11.027
[25] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703. doi: 10.1126/science.133.3465.1702
[26] 易冰, 刘景涛, 吕晓立, 等. 高寒干旱区地表水与地下水水化学特征及转换关系: 以大通河流域为例[J]. 环境科学, 2023, 44(2): 752-760. YI B, LIU J T, LÜ X L, et al. Hydrochemical and isotopic evidence for groundwater conversion of surface water in alpine arid areas: A case study of the Datong River Basin[J]. Environmental Science, 2023, 44(2): 752-760 (in Chinese).
[27] 李海明, 李梦娣, 肖瀚, 等. 天津平原区浅层地下水水化学特征及碳酸盐风化碳汇研究[J]. 地学前缘, 2022, 29(3): 167-178. doi: 10.13745/j.esf.sf.2022.1.39 LI H M, LI M D, XIAO H, et al. Hydrochemical characteristics of shallow groundwater and carbon sequestration in the Tianjin Plain[J]. Earth Science Frontiers, 2022, 29(3): 167-178 (in Chinese). doi: 10.13745/j.esf.sf.2022.1.39
[28] 涂春霖, 马一奇, 令狐昌卫, 等. 滇东高原煤矿聚集区扎外河流域水化学特征及演化规律[J]. 科学技术与工程, 2021, 21(29): 12470-12480. doi: 10.3969/j.issn.1671-1815.2021.29.016 TU C L, MA Y Q, LINGHU C W, et al. Hydro-chemical characteristics and evolution of Zhawai River Basin in coal mining area of eastern Yunnan Plateau[J]. Science Technology and Engineering, 2021, 21(29): 12470-12480 (in Chinese). doi: 10.3969/j.issn.1671-1815.2021.29.016
[29] 肖勇, 莫培, 尹世洋, 等. 北京南郊平原地下水化学特征及成因分析[J]. 环境工程, 2021, 39(8): 99-107. doi: 10.13205/j.hjgc.202108013 XIAO Y, MO P, YIN S Y, et al. Hydrochemical characteristics and genesis of groundwater in southern suburb of Beijing plain[J]. Environmental Engineering, 2021, 39(8): 99-107 (in Chinese). doi: 10.13205/j.hjgc.202108013
[30] YANG P H, WANG Y Y, WU X Y, et al. Nitrate sources and biogeochemical processes in Karst underground rivers impacted by different anthropogenic input characteristics[J]. Environmental Pollution, 2020, 265: 114835. doi: 10.1016/j.envpol.2020.114835
[31] 袁建飞, 邓国仕, 徐芬, 等. 毕节市北部岩溶地下水水文地球化学特征[J]. 水文地质工程地质, 2016, 43(1): 12-21. doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03 YUAN J F, DENG G S, XU F, et al. Hydrogeochemical characteristics of Karst groundwater in the northern part of the city of Bijie[J]. Hydrogeology & Engineering Geology, 2016, 43(1): 12-21 (in Chinese). doi: 10.16030/j.cnki.issn.1000-3665.2016.01.03
[32] 郭小娇, 王慧玮, 石建省, 等. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 2022, 96(2): 656-672. doi: 10.3969/j.issn.0001-5717.2022.02.020 GUO X J, WANG H W, SHI J S, et al. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 2022, 96(2): 656-672 (in Chinese). doi: 10.3969/j.issn.0001-5717.2022.02.020
[33] 刘德玉, 贾贵义, 张伟, 等. 甘肃敦煌地区疏勒河尾闾区地下水化学特征及成因分析[J]. 地质论评, 2022, 68(1): 181-194. doi: 10.16509/j.georeview.2021.12.135 LIU D Y, JIA G Y, ZHANG W, et al. Hydrochemical characteristics and genetic mechanism analysis of groundwater in the tail area of the Shule River, Dunhuang, Gansu[J]. Geological Review, 2022, 68(1): 181-194 (in Chinese). doi: 10.16509/j.georeview.2021.12.135
[34] 林云, 曹飞龙, 武亚遵, 等. 北方典型岩溶泉域地下水水文地球化学特征分析: 以鹤壁许家沟泉域为例[J]. 地球与环境, 2020, 48(3): 294-306. LIN Y, CAO F L, WU Y Z, et al. Hydrogeochemical characteristics of groundwater in typical Karst spring areas of North China-a case study in the xujiagou spring area, Hebi[J]. Earth and Environment, 2020, 48(3): 294-306 (in Chinese).
[35] JIA H, QIAN H, ZHENG L, et al. Alterations to groundwater chemistry due to modern water transfer for irrigation over decades[J]. Science of the Total Environment, 2020, 717: 137170. doi: 10.1016/j.scitotenv.2020.137170
[36] MONDAL D, GUPTA S, REDDY D V, et al. Geochemical controls on fluoride concentrations in groundwater from alluvial aquifers of the Birbhum district, West Bengal, India[J]. Journal of Geochemical Exploration, 2014, 145: 190-206. doi: 10.1016/j.gexplo.2014.06.005
[37] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素[J]. 环境科学, 2020, 41(9): 4003-4010. ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin[J]. Environmental Science, 2020, 41(9): 4003-4010 (in Chinese).
[38] 黄奇波, 覃小群, 刘朋雨, 等. 汾阳地区不同类型地下水SO42−、δ34S的特征及影响因素[J]. 第四纪研究, 2014, 34(2): 364-371. HUANG Q B, QIN X Q, LIU P Y, et al. The characteristics and influencing factors of so42−and sulfate isotope(δ34s)in different types of groundwater in Fenyang, Shanxi Province[J]. Quaternary Sciences, 2014, 34(2): 364-371 (in Chinese).
[39] 何明霞, 张兵, 夏文雪, 等. 天津七里海湿地水化学组成及主要离子来源分析[J]. 环境科学, 2021, 42(2): 776-785. HE M X, ZHANG B, XIA W X, et al. Hydrochemical characteristics and analysis of the qilihai wetland, Tianjin[J]. Environmental Science, 2021, 42(2): 776-785 (in Chinese).
[40] 傅雪梅, 孙源媛, 苏婧, 等. 基于水化学和氮氧双同位素的地下水硝酸盐源解析[J]. 中国环境科学, 2019, 39(9): 3951-3958. FU X M, SUN Y Y, SU J, et al. Source of nitrate in groundwater based on hydrochemical and dual stable isotopes[J]. China Environmental Science, 2019, 39(9): 3951-3958 (in Chinese).
[41] RAHMATI O, SAMANI A N, MAHMOODI N, et al. Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh–dehgelan aquifer)[J]. Water Quality, Exposure and Health, 2015, 7(2): 143-151. doi: 10.1007/s12403-014-0135-5
[42] MAO H R, WANG G C, RAO Z, et al. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics[J]. Journal of Cleaner Production, 2021, 329: 129697. doi: 10.1016/j.jclepro.2021.129697
[43] CHETELAT B, LIU C Q, ZHAO Z Q, et al. Geochemistry of the dissolved load of the Changjiang Basin Rivers: Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4254-4277. doi: 10.1016/j.gca.2008.06.013
[44] GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
[45] 唐金平, 张强, 胡漾, 等. 巴中北部岩溶山区地下水化学特征及演化分析[J]. 环境科学, 2019, 40(10): 4543-4552. doi: 10.13227/j.hjkx.201904068 TANG J P, ZHANG Q, HU Y, et al. Hydrochemical characteristics of Karst groundwater in the mountains of northern Bazhong city, China[J]. Environmental Science, 2019, 40(10): 4543-4552 (in Chinese). doi: 10.13227/j.hjkx.201904068
[46] 苏春利, 张雅, 马燕华, 等. 贵阳市岩溶地下水水化学演化机制: 水化学和锶同位素证据[J]. 地球科学, 2019, 44(9): 2829-2838. SU C L, ZHANG Y, MA Y H, et al. Hydrochemical evolution processes of Karst groundwater in Guiyang city: Evidences from hydrochemistry and 87Sr/86Sr ratios[J]. Earth Science, 2019, 44(9): 2829-2838 (in Chinese).