[1] KIM S Y, PARK J W, NOH J H, et al. Potential organic matter management for industrial wastewater guidelines using advanced dissolved organic matter characterization tools[J]. Journal of Water Process Engineering, 2022, 46: 102604.
[2] RIBEIRO J P, NUNES M I. Recent trends and developments in Fenton processes for industrial wastewater treatment: A critical review[J]. Environmental Research, 2021, 197: 110957.
[3] 陈斌. Fenton法处理焦化废水的试验研究[J]. 能源环境保护, 2017, 31(5): 12-14. doi: 10.3969/j.issn.1006-8759.2017.05.003
[4] 尹星, 郭雲, 任乐辉, 等. Pd/Ti阳极电催化氧化处理焦化废水反渗透浓缩液的研究[J]. 能源环境保护, 2023, 37(6): 12-22.
[5] GAYEN P, CHEN C, ABIADE J T, et al. Electrochemical oxidation of atrazine and clothianidin on Bi-doped SnO2-TinO2n–1 electrocatalytic reactive electrochemical membranes[J]. Environmental Science & Technology, 2018, 52(21): 12675-12684.
[6] LIN H, PENG H, FENG X, et al. Energy-efficient for advanced oxidation of bio-treated landfill leachate effluent by reactive electrochemical membranes (REMs): Laboratory and pilot scale studies[J]. Water Research, 2021, 190: 116790.
[7] TRELLU C, CHAPLIN B P, COETSIER C, et al. Electro-oxidation of organic pollutants by reactive electrochemical membranes[J]. Chemosphere, 2018, 208: 159-175.
[8] YANG K, ZHANG X, ZU D, et al. Shifting emphasis from electro-to catalytically active sites: Effects of pore size of flow-through anodes on water purification[J]. Environmental Science & Technology, 2023, 57(48): 20421-20430.
[9] YANG K, LIN H, FENG X, et al. Energy-efficient removal of trace antibiotics from low-conductivity water using a Ti4O7 reactive electrochemical ceramic membrane: Matrix effects and implications for byproduct formation[J]. Water Research, 2022, 224: 119047.
[10] YANG K, FENG X, LIN H, et al. Insight into the rapid elimination of low-concentration antibiotics from natural waters using tandem multilevel reactive electrochemical membranes: Role of direct electron transfer and hydroxyl radical oxidation[J]. Journal of Hazardous Materials, 2022, 423: 127239.
[11] SHI H, WANG Y, LI C, et al. Degradation of perfluorooctanesulfonate by reactive electrochemical membrane composed of magneli phase titanium suboxide[J]. Environmental Science & Technology, 2019, 53(24): 14528-14537.
[12] CHEN M, ZHAO X, WANG C, et al. Electrochemical oxidation of reverse osmosis concentrates using macroporous Ti-ENTA/SnO2-Sb flow-through anode: Degradation performance, energy efficiency and toxicity assessment[J]. Journal of Hazardous Materials, 2021, 401: 123295.
[13] LIN M-H, BULMAN D M, REMUCAL C K, et al. Chlorinated byproduct formation during the electrochemical advanced oxidation process at Magnéli phase Ti4O7 electrodes[J]. Environmental Science & Technology, 2020, 54(19): 12673-12683.
[14] YANG S, FERNANDO S, HOLSEN T M, et al. Inhibition of perchlorate formation during the electrochemical oxidation of perfluoroalkyl acid in groundwater[J]. Environmental Science & Technology Letters, 2019, 6(12): 775-780.
[15] PENG H, FENG X, YANG Y, et al. Flow-through electrochemical activation of persulfate for efficient wastewater treatment using Ti4O7 reactive electrochemical membranes[J]. ACS ES& T Water, 2023, 3(5): 1294-1304.
[16] YAO F, ZHONG Y, YANG Q, et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode[J]. Journal of Hazardous Materials, 2017, 323: 602-610.
[17] 李守彪, 吴亚品, 徐凤麒, 等. ClOx-产物对电氧化COD去除性能评价及水体毒性的影响[J]. 工业水处理: 1-13.
[18] YANG K, LIN H, LIANG S, et al. A reactive electrochemical filter system with an excellent penetration flux porous Ti/SnO2–Sb filter for efficient contaminant removal from water[J]. RSC Advances, 2018, 8(25): 13933-13944.
[19] YANG K, XU J, LIN H, et al. Developing a low-pressure and super stable electrochemical tubular reactive filter: Outstanding efficiency for wastewater purification[J]. Electrochimica Acta, 2020, 335: 135634.
[20] YANG K, LIN H, JIANG J, et al. Enhanced electrochemical oxidation of tetracycline and atrazine on SnO2 reactive electrochemical membranes by low-toxic bismuth, cerium doping[J]. Separation and Purification Technology, 2022, 297: 121453.
[21] UKUNDIMANA Z, OMWENE P, GENGEC E, et al. Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types[J]. Electrochimica Acta, 2018, 286: 252-263.
[22] PANIIZZA M, MARTINEZ-HUITLE C A. Role of electrode materials for the anodic oxidation of a real landfill leachate-Comparison between Ti-Ru-Sn ternary oxide, PbO2 and boron-doped diamond anode[J]. Chemosphere, 2013, 90(4): 1455-1460.
[23] LE LUU T. Post treatment of ICEAS-biologically landfill leachate using electrochemical oxidation with Ti/BDD and Ti/RuO2 anodes[J]. Environmental Technology & Innovation, 2020, 20: 101099.
[24] YAN S, LIU Y, LIAN L, et al. Photochemical formation of carbonate radical and its reaction with dissolved organic matters[J]. Water Research, 2019, 161: 288-296.
[25] JASPER J T, YANG Y, HPFFMANN M R. Toxic byproduct formation during electrochemical treatment of latrine wastewater[J]. Environmental Science & Technology, 2017, 51(12): 7111-7119.
[26] WANG L, WNAG Y, SUI Y, et al. Formation of chlorate and perchlorate during electrochemical oxidation by Magnéli phase Ti4O7 anode: inhibitory effects of coexisting constituents[J]. Scientific Reports, 2022, 12(1): 15880.
[27] WANG Y, LI L, HUANG Q. Electrooxidation of per-and polyfluoroalkyl substances in chloride-containing water on surface-fluorinated Ti4O7 anodes: Mitigation and elimination of chlorate and perchlorate formation[J]. Chemosphere, 2022, 307: 135877.
[28] WANG L, LU J, LI L, et al. Effects of chloride on electrochemical degradation of perfluorooctanesulfonate by Magnéli phase Ti4O7 and boron doped diamond anodes[J]. Water Research, 2020, 170: 115254.
[29] FU R, ZHANG P S, JIANG Y X, et al. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods[J]. Chemosphere, 2023, 311: 136993.
[30] GUO L, JING Y, CHAPLIN B P. Development and characterization of ultrafiltration TiO2 Magnéli phase reactive electrochemical membranes[J]. Environmental Science & Technology, 2016, 50(3): 1428-1436.
[31] YANG K, ZU D, ZHANG Z, et al. Mechanistic insight into the spatial scale of nonuniform oxidation of micropollutants in reactive electrochemical membranes for water purification[J]. ACS ES& T Engineering, 2023, 3(12): 2194-2201.
[32] LIU Z, TAO Y, ZHANG Z, et al. Active chlorine mediated ammonia oxidation in an electrified SnO2-Sb filter: Reactivity, mechanisms and response to matrix effects[J]. Separation and Purification Technology, 2023, 312: 123369.
[33] ZHOU J, PAN F, YAO Q, et al. Achieving efficient and stable electrochemical nitrate removal by in-situ reconstruction of Cu2O/Cu electroactive nanocatalysts on Cu foam[J]. Applied Catalysis B: Environmental, 2022, 317: 121811.
[34] 李智卓, 姚福兵, 吴星, 等. 硝酸盐废水电化学选择性还原产氨的研究进展[J]. 能源环境保护, 2023, 37(4): 56-67.