[1] |
彭渤, 吴甫成, 肖美莲, 等. 黑色页岩的资源功能和环境效应[J]. 矿物岩石地球化学通报, 2005, 24(2): 153-158.
PENG B, WU F C, XIAO M L, et al. The resource functions and environment effects of black shales[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2005, 24(2): 153-158 (in Chinese).
|
[2] |
PENG B, RATE A, SONG Z L, et al. Geochemistry of major and trace elements and Pb–Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China[J]. Applied Geochemistry, 2014, 51: 191-203. doi: 10.1016/j.apgeochem.2014.09.007
|
[3] |
YU C X, BOILY J F, SHCHUKAREV A, et al. A cryogenic XPS study of Ce fixation on nanosized manganite and vernadite: Interfacial reactions and effects of fulvic acid complexation[J]. Chemical Geology, 2018, 483: 304-311. doi: 10.1016/j.chemgeo.2018.02.033
|
[4] |
JIN L X, MA L, DERE A, et al. REE mobility and fractionation during shale weathering along a climate gradient[J]. Chemical Geology, 2017, 466: 352-379. doi: 10.1016/j.chemgeo.2017.06.024
|
[5] |
STOLZE L, ARORA B, DWIVEDI D, et al. Aerobic respiration controls on shale weathering[J]. Geochimica et Cosmochimica Acta, 2023, 340: 172-188. doi: 10.1016/j.gca.2022.11.002
|
[6] |
周东晓, 彭渤, 王勤, 等. 扬子地台西缘下寒武统黑色页岩土壤元素地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(1): 59-71.
ZHOU D X, PENG B, WANG Q, et al. Elemental geochemical characteristics of soils derived from the lower Cambrian black shales in the western Yangtze platform, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 59-71 (in Chinese).
|
[7] |
李晓敏, 彭渤, 邬思成, 等. 扬子地台西缘震旦系-下寒武统黑色页岩中磷块岩环境地球化学分析[J]. 矿物岩石地球化学通报, 2021, 40(6): 1369-1383.
LI X M, PENG B, WU S C, et al. Environmental geochemical approach to phosphorite in the simian-Lower Cambrian black shale in western Yangtze platform, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(6): 1369-1383 (in Chinese).
|
[8] |
DERKOWSKI A, MARYNOWSKI L. Binding of heavy metals by oxidised kerogen in (palaeo)weathered black shales[J]. Chemical Geology, 2018, 493: 441-450. doi: 10.1016/j.chemgeo.2018.06.025
|
[9] |
TYSZKA R, PIETRANIK A, KIERCZAK J, et al. Cadmium distribution in Pb-Zn slags from Upper Silesia, Poland: Implications for cadmium mobility from slag phases to the environment[J]. Journal of Geochemical Exploration, 2018, 186: 215-224. doi: 10.1016/j.gexplo.2017.12.001
|
[10] |
QUEZADA-HINOJOSA R P, FÖLLMI K B, VERRECCHIA E, et al. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains[J]. CATENA, 2015, 125: 10-32. doi: 10.1016/j.catena.2014.10.003
|
[11] |
NOIREAUX J, SULLIVAN P L, GAILLARDET J, et al. Developing boron isotopes to elucidate shale weathering in the critical zone[J]. Chemical Geology, 2021, 559: 119900. doi: 10.1016/j.chemgeo.2020.119900
|
[12] |
PENG B, SONG Z L, TU X L, et al. Release of heavy metals during weathering of the Lower Cambrian Black Shales in western Hunan, China[J]. Environmental Geology, 2004, 45(8): 1137-1147. doi: 10.1007/s00254-004-0974-7
|
[13] |
YU C X, PENG B, PELTOLA P, et al. Effect of weathering on abundance and release of potentially toxic elements in soils developed on Lower Cambrian black shales, P. R. China[J]. Environmental Geochemistry and Health, 2012, 34(3): 375-390. doi: 10.1007/s10653-011-9398-y
|
[14] |
XU J Z, PENG B, YU C X, et al. Geochemistry of soils derived from black shales in the Ganziping Mine area, western Hunan, China[J]. Environmental Earth Sciences, 2013, 70(1): 175-190. doi: 10.1007/s12665-012-2114-0
|
[15] |
彭渤, 唐晓燕, 余昌训, 等. 湘中HJC铀矿区黑色页岩土壤重金属污染地球化学分析[J]. 地质学报, 2009, 83(1): 89-106.
PENG B, TANG X Y, YU C X, et al. Geochemical study of heavy metal contamination of soils derived from black shales at the HJC uranium mine in central Hunan, China[J]. Acta Geologica Sinica, 2009, 83(1): 89-106 (in Chinese).
|
[16] |
余昌训, 彭渤, 唐晓燕, 等. 湘中下寒武统黑色页岩土壤的地球化学特征[J]. 土壤学报, 2009, 46(4): 557-570.
YU C X, PENG B, TANG X Y, et al. Geochemical characteristics of soils derived from the lower-Cambrian black shales distributed in central Hunan, China[J]. Acta Pedologica Sinica, 2009, 46(4): 557-570(in Chinese).
|
[17] |
MAO J. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97(5): 1051-1061. doi: 10.2113/gsecongeo.97.5.1051
|
[18] |
周明忠, 罗泰义, 刘世荣, 等. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义[J]. 中国科学: 地球科学, 2013, 43(7): 1195-1206. doi: 10.1360/zd-2013-43-7-1195
ZHOU M Z, LUO T Y, LIU S R, et al. SHRIMP zircon age for a K-bentonite in the top of the Laobao Formation at the Pingyin section, Guizhou, South China[J]. Scientia Sinica (Terrae), 2013, 43(7): 1195-1206 (in Chinese). doi: 10.1360/zd-2013-43-7-1195
|
[19] |
JIANG S Y, CHEN Y Q, LING H F, et al. Trace- and rare-earth element geochemistry and Pb–Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China[J]. Mineralium Deposita, 2006, 41(5): 453-467. doi: 10.1007/s00126-006-0066-6
|
[20] |
JIANG S Y, ZHAO H X, CHEN Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China[J]. Chemical Geology, 2007, 244(3/4): 584-604.
|
[21] |
PENG B, PIESTRZYNSKI A, PIECZONKA J, et al. Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China[J]. Environmental Geology, 2007, 52(7): 1277-1296. doi: 10.1007/s00254-006-0567-8
|
[22] |
JIANG S Y, YANG J H, LING H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228.
|
[23] |
吴蓓娟, 彭渤, 张坤, 等. 黑色页岩化学风化程度指标研究[J]. 地质学报, 2016, 90(4): 818-832.
WU B J, PENG B, ZHANG K, et al. A new chemical index of identifying the weathering degree of black shales[J]. Acta Geologica Sinica, 2016, 90(4): 818-832 (in Chinese).
|
[24] |
高山, 骆庭川, 张本仁, 等. 中国东部地壳的结构和组成[J]. 中国科学(D辑: 地球科学), 1999, 29(3): 204-213.
GAO S, LUO T C, ZHANG B R, et al. Structure and composition of the crust in Eastern China[J]. Scientia Sinica (Terrae), 1999, 29(3): 204-213 (in Chinese).
|
[25] |
GROMET L P, HASKIN L A, KOROTEV R L, et al. The “North American shale composite” : Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
|
[26] |
刘家齐, 梁燕, 肖凡, 等. 西南喀斯特区域不同植被恢复阶段土壤磷主要来源及其季节变化[J]. 应用生态学报, 2023, 34(12): 3313-3321.
LIU J Q, LIANG Y, XIAO F, et al. Main sources of soil phosphorus and their seasonal changes across different vegetation restoration stages in Karst Region of southwest China[J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3313-3321 (in Chinese).
|
[27] |
鄢明才, 迟清华, 顾铁新, 等. 中国东部上地壳化学组成[J]. 中国科学(D辑: 地球科学), 1997, 27(3): 193-199.
YAN M C, CHI Q H, GU T X, et al. Chemical composition of the upper crust in Eastern China[J]. Science in China, Ser. D, 1997, 27(3): 193-199 (in Chinese).
|
[28] |
PARVIAINEN A, LOUKOLA-RUSKEENIEMI K. Environmental impact of mineralised black shales[J]. Earth-Science Reviews, 2019, 192: 65-90. doi: 10.1016/j.earscirev.2019.01.017
|
[29] |
COX R, LOWE D R, CULLERS R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940. doi: 10.1016/0016-7037(95)00185-9
|
[30] |
NESBITT H W, YOUNG G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299: 715-717. doi: 10.1038/299715a0
|
[31] |
PARKER A. An index of weathering for silicate rocks[J]. Geological Magazine, 1970, 107(6): 501-504. doi: 10.1017/S0016756800058581
|
[32] |
SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii[J]. Environmental Geology, 2000, 39(6): 611-627. doi: 10.1007/s002540050473
|
[33] |
DUAN Y R, YANG Z F, YU T, et al. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi[J]. Environmental Pollution, 2020, 260: 113905. doi: 10.1016/j.envpol.2019.113905
|
[34] |
ZHONG C, FENG Z X, JIANG W, et al. Evaluation of geogenic cadmium bioavailability in soil-rice system with high geochemical background caused by black shales[J]. Journal of Soils and Sediments, 2021, 21(2): 1053-1063. doi: 10.1007/s11368-020-02802-0
|
[35] |
WEI W, LING S X, WU X Y, et al. Geochemical accumulation and source tracing of heavy metals in arable soils from a black shale catchment, southwestern China[J]. The Science of the Total Environment, 2023, 857(Pt 2): 159467.
|
[36] |
LV Y W, LIU S A, ZHU J M, et al. Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China[J]. Chemical Geology, 2016, 445: 24-35. doi: 10.1016/j.chemgeo.2016.01.016
|
[37] |
ZHANG S, XU Y F, WU M J, et al. Geogenic enrichment of potentially toxic metals in agricultural soils derived from black shale in northwest Zhejiang, China: Pathways to and risks from associated crops[J]. Ecotoxicology and Environmental Safety, 2021, 215: 112102. doi: 10.1016/j.ecoenv.2021.112102
|
[38] |
唐晓燕, 彭渤, 余昌训, 等. 湖南安化下寒武统黑色页岩土壤元素地球化学特征[J]. 环境科学学报, 2009, 29(12): 2623-2634.
TANG X Y, PENG B, YU C X, et al. Elemental geochemistry of soils derived from the Lower-Cambrian black shales in Anhua County, central Hunan(China)[J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2623-2634 (in Chinese).
|
[39] |
TOLOSANA-DELGADO R, McKINLEY J. Exploring the joint compositional variability of major components and trace elements in the Tellus soil geochemistry survey (Northern Ireland)[J]. Applied Geochemistry, 2016, 75: 263-276. doi: 10.1016/j.apgeochem.2016.05.004
|