[1] LIU H L, CUI Y S, ZHANG B. Effects of iodine and fluorine in drinking water on human health[M]. Encyclopedia of Environmental Health. Amsterdam: Elsevier, 2019: 256-263.
[2] 邢丽娜, 郭华明, 魏亮, 等. 华北平原浅层含氟地下水演化特点及成因[J]. 地球科学与环境学报, 2012, 34(4): 57-67. doi: 10.3969/j.issn.1672-6561.2012.04.008 XING L N, GUO H M, WEI L, et al. Evolution feature and gensis of fluoride groundwater in shallow aquifer from North China Plain[J]. Journal of Earth Sciences and Environment, 2012, 34(4): 57-67 (in Chinese). doi: 10.3969/j.issn.1672-6561.2012.04.008
[3] 孔晓乐, 王仕琴, 赵焕, 等. 华北低平原区地下水中氟分布特征及形成原因: 以南皮县为例[J]. 环境科学, 2015, 36(11): 4051-4059. KONG X L, WANG S Q, ZHAO H, et al. Distribution characteristics and source of fluoride in groundwater in lower plain area of North China Plain: A case study in Nanpi County[J]. Environmental Science, 2015, 36(11): 4051-4059 (in Chinese).
[4] 仲利华, 陈维杰. 水中微量氟的测定及北京地区水氟调查[J]. 环境化学, 1989, 8(1): 42-46. ZHONG L H, CHEN W J. Determination of trace fluoride in water and a survey of drinking water fluoride in Beijing district[J]. Environmental Chemistry, 1989, 8(1): 42-46 (in Chinese).
[5] 刘永清. 北京市通州区第四系地下水氟分布规律研究[J]. 北京水务, 2008(3): 28-31. doi: 10.3969/j.issn.1673-4637.2008.03.011 LIU Y Q. Study on fluorine distribution of Quaternary groundwater in Tongzhou District, Beijing[J]. Beijing Water, 2008(3): 28-31 (in Chinese). doi: 10.3969/j.issn.1673-4637.2008.03.011
[6] 王小松, 李宝学, 李阳, 等. 北京通州区第四系地下水化学特征及其成因分析[J]. 灌溉排水学报, 2022, 41(3): 92-97,104. WANG X S, LI B X, LI Y, et al. Hydrochemistry of groundwater in quaternary aquifers in Tongzhou of Beijing and the underlying determinants[J]. Journal of Irrigation and Drainage, 2022, 41(3): 92-97,104 (in Chinese).
[7] 姜体胜, 杨忠山, 王明玉, 等. 北京南部地区地下水氟化物分布特征及成因分析[J]. 干旱区资源与环境, 2012, 26(3): 96-100. JIANG T S, YANG Z S, WANG M Y, et al. The distribution characteristics and causes of fluoride in groundwater of southern district, Beijing[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 96-100 (in Chinese).
[8] TARKI M, ENNEILI A, DASSI L. An appraisal of natural fluorine contamination of paleogroundwater in Tozeur oases, southern Tunisia, with emphasis on the anthropogenic impact[J]. Applied Geochemistry, 2020, 120.
[9] SU H, KANG W D, LI Y R, et al. Fluoride and nitrate contamination of groundwater in the Loess Plateau, China: Sources and related human health risks[J]. Environmental Pollution, 2021, 286: 117287. doi: 10.1016/j.envpol.2021.117287
[10] 徐庆勇, 林健. 北京平原区浅层地下水演化的生态环境效应评价指标初探[J]. 城市地质, 2021, 16(1): 56-61. doi: 10.3969/j.issn.1007-1903.2021.01.008 XU Q Y, LIN J. Preliminary study on evaluation index of eco-environmental effect of shallow groundwater in Beijing Plain area[J]. Urban Geology, 2021, 16(1): 56-61 (in Chinese). doi: 10.3969/j.issn.1007-1903.2021.01.008
[11] 徐庆勇, 赵微, 赵杰, 等. 《北京市平原区地下水环境监测网运2022年年度报告》[R]. 北京市水文地质工程地质大队, 2022, 11. XU Q Y, ZHAO W, ZHAO J, et al. Annual report of Beijing plain area groundwater environment monitoring network 2022 [R]. Beijing: Beijing Hydrogeology Engineering Geology Group, 2022, 11(in Chinese).
[12] 陈吉吉, 吴悦, 陶蕾, 等. 生态补水对永定河沿岸地下水水位、水质的影响[J]. 地球与环境, 2023, 51(3): 266-273. CHEN J J, WU Y, TAO L, et al. Influence of ecological water replenishment on groundwater level and water quality along the Yongding River[J]. Earth and Environment, 2023, 51(3): 266-273 (in Chinese).
[13] 朱利霞, 范俊玲. 河南温县地下水高氟区内土壤中氟的现状评价[J]. 安徽农业科学, 2010, 38(11): 5780-5781. ZHU L X, FAN J L. Status evaluation of edaphic fluorine in high section of groundwater of Wen County in Henan[J]. Journal of Anhui Agricultural Sciences, 2010, 38(11): 5780-5781 (in Chinese).
[14] 徐冬生, 吴道祥, 施国军, 等. 淮北平原钙质结核土与高氟地下水成因关系分析[J]. 合肥工业大学学报(自然科学版), 2010, 33(12): 1858-1861. XU D S, WU D X, SHI G J, et al. Analysis of relationship between calcareous concretion soil and cause of high-fluorine groundwater in Huaibei Plain[J]. Journal of Hefei University of Technology (Natural Science), 2010, 33(12): 1858-1861 (in Chinese).
[15] 孟春霞, 郑西来, 王成见. 平度市高氟地下水分布特征及形成机制研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(11): 111-119. MENG C X, ZHENG X L, WANG C J. Study on distribution characteristics and formation mechanism of high fluorine ground water in Pingdu city[J]. Periodical of Ocean University of China, 2019, 49(11): 111-119 (in Chinese).
[16] 曾昭华. 四川省土壤元素含量和生态农业地质研究[J]. 四川地质学报, 2005, 25(1): 44-50. ZENG Z H. A study of elemental contents in soil and ecologic and agricultural geology in Sichuan[J]. Acta Geologica Sichuan, 2005, 25(1): 44-50 (in Chinese).
[17] 李向全, 祝立人, 候新伟, 等. 太原盆地浅层高氟水分布特征及形成机制研究[J]. 地球学报, 2007, 28(1): 55-61. LI X Q, ZHU L R, HOU X W, et al. Distribution and evolutional mechanism of shallow high-fluoride groundwater in Taiyuan Basin[J]. Acta Geoscientica Sinica, 2007, 28(1): 55-61 (in Chinese).
[18] 朱桦, 杨炳超, 赵阿宁, 等. 陕西省大荔县高氟地下水的形成条件分析[J]. 中国地质, 2010, 37(3): 672-676. ZHU H, YANG B C, ZHAO A N, et al. The formation regularity of high-fluorine groundwater in Dali County, Shaanxi Province[J]. Geology in China, 2010, 37(3): 672-676 (in Chinese).
[19] 范基姣, 佟元清, 李金英, 等. 我国高氟水形成特点的主要影响因子及降氟方法[J]. 安全与环境工程, 2008, 15(1): 14-16. FAN J J, TONG Y Q, LI J Y, et al. Affecting factors of high-fluorine water in our country and scheme to avoid fluorosis[J]. Safety and Environmental Engineering, 2008, 15(1): 14-16 (in Chinese).
[20] 朱其顺, 许光泉. 中国地下水氟污染的现状及研究进展[J]. 环境科学与管理, 2009, 34(1): 42-44,51. ZHU Q S, XU G Q. The current situation and research progress of ground water fluorine pollution, in China[J]. Environmental Science and Management, 2009, 34(1): 42-44,51 (in Chinese).
[21] 王莹, 熊先孝. 中国磷矿成矿系列、成矿规律与找矿方向[J]. 地球学报, 2023, 44(4): 625-634. WANG Y, XIONG X X. Phosphate ore series, metallogenic regularity, and prospecting direction in China[J]. Acta Geoscientica Sinica, 2023, 44(4): 625-634 (in Chinese).
[22] 张跃武, 车胜华. 官厅水库氟化物污染分析[J]. 北京水务, 2008(1): 11-14. ZHANG Y W, CHE S H. Analysis of fluoride pollution in Guanting Reservoir[J]. Beijing Water, 2008(1): 11-14 (in Chinese).
[23] 王新娟, 周训. 北京市永定河流域地下水14C年龄的初步分析[J]. 地质论评, 2006, 52(2): 283-288. WANG X J, ZHOU X. A preliminary analysis of the 14C age of groundwater in the Yongdinghe River Plain in Beijing[J]. Geological Review, 2006, 52(2): 283-288 (in Chinese).
[24] 陈京鹏, 闫燕, 冯颖, 等. 黄河流域下游德州地区地下水水化学成因及生态环境影响[J]. 环境化学, 2023, 42(1): 125-137. doi: 10.7524/j.issn.0254-6108.2022081103 CHEN J P, YAN Y, FENG Y, et al. Hydrochemical genesis and ecological environment influence of groundwater in Dezhou city at lower Yellow River Basin[J]. Environmental Chemistry, 2023, 42(1): 125-137 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022081103
[25] FARID I, TRABELSI R, ZOUARI K, et al. Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia[J]. Environmental Earth Sciences, 2013, 68(5): 1215-1231. doi: 10.1007/s12665-012-1788-7
[26] 肖勇, 莫培, 尹世洋, 等. 北京南郊平原地下水化学特征及成因分析[J]. 环境工程, 2021, 39(8): 99-107. XIAO Y, MO P, YIN S Y, et al. Hydrochemical characteristics and genesis of groundwater in southern suburb of Beijing Plain[J]. Environmental Engineering, 2021, 39(8): 99-107 (in Chinese).
[27] 范祖金, 魏兴, 李佳文, 等. 重庆市万州区浅层地下水化学特征及控制因素[J]. 环境化学, 2023, 42(1): 113-124. doi: 10.7524/j.issn.0254-6108.2022042303 FAN Z J, WEI X, LI J W, et al. Hydrochemical characteristics and possible controls of shallow groundwater in Wanzhou District, Chongqing[J]. Environmental Chemistry, 2023, 42(1): 113-124 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022042303
[28] 张保建, 孙艳丽, 康向阳, 等. 基于水化学的北京及周边岩溶地热水形成条件研究[J]. 城市地质, 2017, 12(1): 11-19. ZHANG B J, SUN Y L, KANG X Y, et al. The study of formation conditions of Karst geothermal water in Beijing and its peripheral areas based on hydrochemical analysis[J]. Urban Geology, 2017, 12(1): 11-19 (in Chinese).