[1] |
VELDERS G J M, FAHEY D W, DANIEL J S, et al. The large contribution of projected HFC emissions to future climate forcing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10949-10954.
|
[2] |
WMO (WORLD METEOROLOGICAL ORGANIZATION). Scientific Assessment of ozone Depletion: 2010 [R]. 2010.
|
[3] |
VELDERS G J M, RAVISHANKARA A R, MILLER M K, et al. Climate change. Preserving Montreal Protocol climate benefits by limiting HFCs[J]. Science, 2012, 335(6071): 922-923. doi: 10.1126/science.1216414
|
[4] |
徐建华, 胡建信, 张剑波. 中国ODS的排放及其对温室效应的贡献[J]. 中国环境科学, 2003, 23(4): 363-366. doi: 10.3321/j.issn:1000-6923.2003.04.007
XU J H, HU J X, ZHANG J B. ODS emission and their contribution to green house effect in China[J]. China Environmental Science, 2003, 23(4): 363-366 (in Chinese). doi: 10.3321/j.issn:1000-6923.2003.04.007
|
[5] |
胡建信, 姚薇, 熊康, 等. 中国履行《蒙特利尔议定书》面临的挑战[J]. 环境保护, 2006, 34(14): 37-39. doi: 10.3969/j.issn.0253-9705.2006.14.009
HU J X, YAO W, XIONG K, et al. Challenges faced by China in implementing the Montreal Protocol[J]. Environmental Protection, 2006, 34(14): 37-39 (in Chinese). doi: 10.3969/j.issn.0253-9705.2006.14.009
|
[6] |
WMO (WORLD METEOROLOGICAL ORGANIZATION). Scientific Assessment of Ozone Depletion: 2018 [R]. Geneva, Switzerland, 2018.
|
[7] |
李春梅, 胡建信, 徐建华, 等. 消耗臭氧层物质对平流层臭氧的影响预测[J]. 中国环境科学, 2005, 25(2): 142-145. doi: 10.3321/j.issn:1000-6923.2005.02.004
LI C M, HU J X, XU J H, et al. Prediction on the influence of ozone depletion substance to the stratospheric ozone[J]. China Environmental Science, 2005, 25(2): 142-145 (in Chinese). doi: 10.3321/j.issn:1000-6923.2005.02.004
|
[8] |
UNFCCC (UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE). 《Kyoto Protocol》 [Z]. 1998.
|
[9] |
PROGRAMME UNITED NATIONS ENVIRONMENT. 《Kigali Amendment》 [R]. 2018.
|
[10] |
RIGBY M, PRINN R G, O’DOHERTY S, et al. Recent and future trends in synthetic greenhouse gas radiative forcing[J]. Geophysical Research Letters, 2014, 41(7): 2623-2630. doi: 10.1002/2013GL059099
|
[11] |
HURWITZ M M, FLEMING E L, NEWMAN P A, et al. Early action on HFCs mitigates future atmospheric change[J]. Environmental Research Letters, 2016, 11(11): 114019. doi: 10.1088/1748-9326/11/11/114019
|
[12] |
VELDERS G J M, SOLOMON S, DANIEL J S. Growth of climate change commitments from HFC banks and emissions[J]. Atmospheric Chemistry and Physics, 2014, 14(9): 4563-4572. doi: 10.5194/acp-14-4563-2014
|
[13] |
Advanced Global Atmospheric Gases Experiment AGAGE Data & Figures [EB/OL]. [2023-11-13].
|
[14] |
VELDERS G J M, FAHEY D W, DANIEL J S, et al. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions[J]. Atmospheric Environment, 2015, 123: 200-209. doi: 10.1016/j.atmosenv.2015.10.071
|
[15] |
FLERLAGE H, VELDERS G J M, de BOER J. A review of bottom-up and top-down emission estimates of hydrofluorocarbons (HFCs) in different parts of the world[J]. Chemosphere, 2021, 283: 131208. doi: 10.1016/j.chemosphere.2021.131208
|
[16] |
MONTZKA S A, McFARLAND M, ANDERSEN S O, et al. Recent trends in global emissions of hydrochlorofluorocarbons and hydrofluorocarbons: Reflecting on the 2007 adjustments to the Montreal Protocol[J]. The Journal of Physical Chemistry. A, 2015, 119(19): 4439-4449. doi: 10.1021/jp5097376
|
[17] |
VELDERS G J M, DANIEL J S, MONTZKA S A, et al. Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies[J]. Atmospheric Chemistry and Physics, 2022, 22(9): 6087-6101. doi: 10.5194/acp-22-6087-2022
|
[18] |
IPCC. Climate Change 2021: The Physical Science Basis [R]. Cambridge, United Kingdom and New York: Cambridge University Press, 2021.
|
[19] |
FANG X K, RAVISHANKARA A R, VELDERS G J M, et al. Changes in emissions of ozone-depleting substances from China due to implementation of the Montreal protocol[J]. Environmental Science & Technology, 2018, 52(19): 11359-11366.
|
[20] |
WU J, DING S, FANG X K, et al. Banks, emissions, and environmental impacts of China’s ozone depletion substances and hydrofluorocarbon substitutes during 1980-2020[J]. The Science of the Total Environment, 2023, 882: 163586. doi: 10.1016/j.scitotenv.2023.163586
|
[21] |
SHI X R, ZHENG Y X, LEI Y, et al. Air quality benefits of achieving carbon neutrality in China[J]. The Science of the Total Environment, 2021, 795: 148784. doi: 10.1016/j.scitotenv.2021.148784
|
[22] |
WMO (WORLD METEOROLOGICAL ORGANIZATION). Scientific Assessment of Ozone Depletion: 2022 [R]. WMO: Geneva, 2022.
|
[23] |
胡建信, 万丹, 李春梅, 等. 中国汽车空调行业HFC-134a需求和排放预测[J]. 气候变化研究进展, 2009, 5(1): 1-6.
HU J X, WAN D, LI C M, et al. Forecasting of consumption and emission of HFC-134a used in automobile air conditioner sector in China[J]. Advances in Climate Change Research, 2009, 5(1): 1-6 (in Chinese).
|
[24] |
HU J X, WAN D, LI C M, et al. Forecast of consumption and emission of HFC-134a used in the mobile air-conditioner sector in China[J]. Advances in Climate Change Research, 2010, 1(1): 20-26. doi: 10.3724/SP.J.1248.2010.00020
|
[25] |
SU S S, FANG X K, LI L, et al. HFC-134a emissions from mobile air conditioning in China from 1995 to 2030[J]. Atmospheric Environment, 2015, 102: 122-129. doi: 10.1016/j.atmosenv.2014.11.057
|
[26] |
YUAN Z Y, OU X M, PENG T D, et al. Development and application of a life cycle greenhouse gas emission analysis model for mobile air conditioning systems[J]. Applied Energy, 2018, 221: 161-179. doi: 10.1016/j.apenergy.2018.03.073
|
[27] |
XIANG X Y, ZHAO X C, JIANG P N, et al. Scenario analysis of hydrofluorocarbons emission reduction in China’s mobile air-conditioning sector[J]. Advances in Climate Change Research, 2022, 13(4): 578-586. doi: 10.1016/j.accre.2022.04.006
|
[28] |
DING S, WU J, WANG J, et al. Establishment of HFC-134a emission inventory in the North China Plain from 1995 to 2020[J]. Atmosphere, 2023, 14(3): 501. doi: 10.3390/atmos14030501
|
[29] |
FANG X K, MILLER B R, SU S S, et al. Historical emissions of HFC-23 (CHF3) in China and projections upon policy options by 2050[J]. Environmental Science & Technology, 2014, 48(7): 4056-4062.
|
[30] |
ZHAO X C, XIANG X Y, WANG S C, et al. By-production, emissions and abatement cost–climate benefit of HFC-23 in China’s HCFC-22 plants[J]. Advances in Climate Change Research, 2023, 14(1): 136-144. doi: 10.1016/j.accre.2023.01.003
|
[31] |
JIANG P N, LI Y X, BAI F L, et al. Coordinating to promote refrigerant transition and energy efficiency improvement of room air conditioners in China: Mitigation potential and costs[J]. Journal of Cleaner Production, 2023, 382: 134916. doi: 10.1016/j.jclepro.2022.134916
|
[32] |
BAI F L, AN M D, WU J, et al. Pathway and cost-benefit analysis to achieve China’s zero hydrofluorocarbon emissions[J]. Environmental Science & Technology, 2023, 57(16): 6474-6484.
|
[33] |
中国工程院. 中国碳达峰碳中和战略及路径研究 [Z]. 2021.
Chinese Academy of Engineering. China Carbon Dafeng Carbon neutralization strategy and path research [Z]. 2021 (in Chinese) .
|
[34] |
WORLDBANK. Population estimates and projections Database [DB]. 2022.
|
[35] |
FANG X K, VELDERS G J M, RAVISHANKARA A R, et al. Hydrofluorocarbon (HFC) emissions in China: An inventory for 2005-2013 and projections to 2050[J]. Environmental Science & Technology, 2016, 50(4): 2027-2034.
|
[36] |
RIAHI K, VUUREN D P, KRIEGLER E, et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview[J]. Global Environmental Change-Human and Policy Dimensions, 2017, 42: 153-168. doi: 10.1016/j.gloenvcha.2016.05.009
|
[37] |
生态环境部. 《2024年度氢氟碳化物配额总量设定与分配方案》[Z]. 2023.
Ministry of Ecology and Environment. "2024 Total Hydrofluorocarbon Quota Setting and Allocation Plan"[Z]. 2023 (in Chinese).
|
[38] |
YAO B, FANG X K, VOLLMER M K, et al. China’s hydrofluorocarbon emissions for 2011–2017 inferred from atmospheric measurements[J]. Environmental Science & Technology Letters, 2019, 6(8): 479-486.
|
[39] |
United Nations Intergovernmental Panel on Climate Change. "IPCC 2006 Guidelines for National Greenhouse Gas Inventories" [R]. 2006.
|