[1] YANG M Y, SHI L, ZHANG D, et al. Adsorption of herring sperm DNA onto pine sawdust biochar: Thermodynamics and site energy distribution[J]. Frontiers of Environmental Science & Engineering, 2022, 16(11): 144.
[2] SUTHERLAND I W. The biofilm matrix - an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222-227 doi: 10.1016/S0966-842X(01)02012-1
[3] MORRISSEY E M, MCHUGH T A, PRETESKA L, et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil[J]. Soil Biology and Biochemistry, 2015, 86: 42-49. doi: 10.1016/j.soilbio.2015.03.020
[4] SHI B Y, ZHENG M, TAO W, et al. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems[J]. Biomacromolecules, 2017, 18(8): 2231-2246. doi: 10.1021/acs.biomac.7b00803
[5] 赵方园, 杨新瑶, 陈芳敏, 等. 抗性DNA在水土环境中的迁移归趋与水平转移[J]. 环境化学, 2018, 37(8): 1804-1819. doi: 10.7524/j.issn.0254-6108.2018022701 ZHAO F Y, YANG X Y, CHEN F M, et al. Transport, fate and horizontal transfer of antibiotic resistance DNA in soil and water environment[J]. Environmental Chemistry, 2018, 37(8): 1804-1819 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018022701
[6] ZAREI-BAYGI A, SMITH A L. Intracellular versus extracellular antibiotic resistance genes in the environment: Prevalence, horizontal transfer, and mitigation strategies[J]. Bioresource Technology, 2021, 319: 124181. doi: 10.1016/j.biortech.2020.124181
[7] HALE L, CROWLEY D. DNA extraction methodology for biochar-amended sand and clay[J]. Biology and Fertility of Soils, 2015, 51(6): 733-738. doi: 10.1007/s00374-015-1020-5
[8] FERREIRA P, RISCADO M, BERNARDO S, et al. Pristine Multi-walled carbon nanotubes for a rapid and efficient plasmid DNA clarification[J]. Separation and Purification Technology, 2023, 320: 124224. doi: 10.1016/j.seppur.2023.124224
[9] FANG J, JIN L, MENG Q K, et al. Interactions of extracellular DNA with aromatized biochar and protection against degradation by DNase I[J]. Journal of Environmental Sciences, 2021, 101: 205-216. doi: 10.1016/j.jes.2020.08.017
[10] SUN J X, LI Y, LIN J P. Studying the adsorption of DNA nanostructures on graphene in the aqueous phase using molecular dynamic simulations[J]. Journal of Molecular Graphics and Modelling, 2017, 74: 16-23. doi: 10.1016/j.jmgm.2017.03.003
[11] LIAN F, YU W C, ZHOU Q X, et al. Size matters: Nano-biochar triggers decomposition and transformation inhibition of antibiotic resistance genes in aqueous environments[J]. Environmental Science & Technology, 2020, 54(14): 8821-8829.
[12] LIU S Y, LI X X, CHEN L, et al. Understanding physicochemical properties changes from multi-scale structures of starch/CNT nanocomposite films[J]. International Journal of Biological Macromolecules, 2017, 104: 1330-1337. doi: 10.1016/j.ijbiomac.2017.05.174
[13] 王志刚, 陈文晶, 胡影, 等. DNA在黑土胶体微界面的吸附与解吸特性[J]. 农业环境科学学报, 2017, 36(10): 2058-2062. doi: 10.11654/jaes.2017-0619 WANG Z G, CHEN W J, HU Y, et al. Characteristics of DNA adsorption and desorption on micro-interfaces of black soil colloids[J]. Journal of Agro-Environment Science, 2017, 36(10): 2058-2062 (in Chinese). doi: 10.11654/jaes.2017-0619
[14] CAI P, HUANG Q, ZHANG X, et al. Adsorption of DNA on clay minerals and various colloidal particles from an Alfisol[J]. Soil Biology and Biochemistry, 2006, 38(3): 471-476. doi: 10.1016/j.soilbio.2005.05.019
[15] LI L, LIM S F, PURETZKY A, et al. DNA methylation detection using resonance and nanobowtie-antenna-enhanced Raman spectroscopy[J]. Biophysical Journal, 2018, 114(11): 2498-2506. doi: 10.1016/j.bpj.2018.04.021
[16] HYUNG H, FORTNER J D, HUGHES J B, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase[J]. Environmental Science & Technology, 2007, 41(1): 179-184.
[17] HENRY P A, RAUT A S, UBNOSKE S M, et al. Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films[J]. Electrochemistry Communications, 2014, 48: 103-106. doi: 10.1016/j.elecom.2014.08.024
[18] DELINE A R, FRANK B P, SMITH C L, et al. Influence of oxygen-containing functional groups on the environmental properties, transformations, and toxicity of carbon nanotubes[J]. Chemical Reviews, 2020, 120(20): 11651-11697. doi: 10.1021/acs.chemrev.0c00351
[19] ROMAN T, DIÑO W A, NAKANISHI H, et al. Glycine adsorption on single-walled carbon nanotubes[J]. Thin Solid Films, 2006, 509(1/2): 218-222.
[20] AL-GHOUTI M A, DA’ANA D A. Guidelines for the use and interpretation of adsorption isotherm models: A review[J]. Journal of Hazardous Materials, 2020, 393: 122383. doi: 10.1016/j.jhazmat.2020.122383
[21] VAN ALIN A, CORBETT M K, FATHOLLAHZADEH H, et al. Klebsiella aerogenes adhesion behaviour during biofilm formation on monazite[J]. Microorganisms, 2023, 11(5): 1331. doi: 10.3390/microorganisms11051331
[22] BRANDÃO-DIAS P F P, TANK J L, SNYDER E D, et al. Suspended materials affect particle size distribution and removal of environmental DNA in flowing waters[J]. Environmental Science & Technology, 2023, 57(35): 13161-13171.
[23] ZHU J H, YU J Y, ZHANG B J, et al. Hydrophobic-action-driven removal of six organophosphorus pesticides from tea infusion by modified carbonized bacterial cellulose[J]. Food Chemistry, 2023, 412: 135546. doi: 10.1016/j.foodchem.2023.135546
[24] WANG Z Y, YU X D, PAN B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbon nanotubes[J]. Environmental Science & Technology, 2010, 44(3): 978-984.
[25] SHENG X, QIN C, YANG B, et al. Metal cation saturation on montmorillonites facilitates the adsorption of DNA via cation bridging[J]. Chemosphere, 2019, 235: 670-678. doi: 10.1016/j.chemosphere.2019.06.159
[26] 王慎阳, 饶伟, 王代长, 等. 蒙脱土、高岭土和针铁矿对DNA吸附与解吸特征[J]. 环境科学, 2012, 33(5): 1736-1743. WANG S Y, RAO W, WANG D C, et al. Characteristics of DNA adsorption and desorption in montmorillonite, kaoline and goethite[J]. Environmental Science, 2012, 33(5): 1736-1743 (in Chinese).
[27] APUL O G, WANG Q L, ZHOU Y, et al. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon[J]. Water Research, 2013, 47(4): 1648-1654. doi: 10.1016/j.watres.2012.12.031
[28] KAGZI K, HECHLER R M, FUSSMANN G F, et al. Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions[J]. Molecular Ecology Resources, 2022, 22(7): 2640-2650. doi: 10.1111/1755-0998.13655
[29] MA P C, SIDDIQUI N A, MÄDER E, et al. Correlation between electrokinetic potential, dispersibility, surface chemistry and energy of carbon nanotubes[J]. Composites Science and Technology, 2011, 71(14): 1644-1651. doi: 10.1016/j.compscitech.2011.07.014
[30] SHI L, ZHANG D, ZHAO J F, et al. Small organic molecules act as a trigger in an “unzippering” mechanism to facilitate carbon nanotube dispersion[J]. Science of the Total Environment, 2021, 758: 143620. doi: 10.1016/j.scitotenv.2020.143620
[31] LING H X, YU X X, WANG S F, et al. Study on ultrasonic assisted mechanism of ring opening polymerization of octamethylcyclotetrasiloxane (D4)[C]//AIP Conference Proceedings. Hangzhou, China, 2018.
[32] YIN M N, SHI L, ZHANG D, et al. New insights into the “unzippering” mechanism of carbon nanotube dispersion via the “trigger” effect of small charged molecules[J]. Colloid and Interface Science Communications, 2021, 43: 100456. doi: 10.1016/j.colcom.2021.100456