[1] |
周巧巧, 任勃, 李有志, 等. 中国河湖水体重金属污染趋势及来源解析[J]. 环境化学, 2020, 39(8): 2044-2054. doi: 10.7524/j.issn.0254-6108.2019060403
ZHOU Q Q, REN B, LI Y Z, et al. Trends and sources of dissolved heavy metal pollution in water of rivers and lakes in China[J]. Environmental Chemistry, 2020, 39(8): 2044-2054 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019060403
|
[2] |
孙芹菊, 林少华, 高莉苹, 等. 生物炭原位修复重金属污染底泥研究现状与展望[J]. 应用化工, 2021, 50(8): 2200-2206,2214.
SUN Q J, LIN S H, GAO L P, et al. Research status and prospect of in situ remediation of heavy metal contaminated sediment with biochar[J]. Applied Chemical Industry, 2021, 50(8): 2200-2206,2214 (in Chinese).
|
[3] |
胡兰文, 陈明, 杨泉, 等. 底泥重金属污染现状及修复技术进展[J]. 环境工程, 2017, 35(12): 115-118,123.
HU L W, CHEN M, YANG Q, et al. Present situation of heavy metal pollution in sediments and its remediation technologies[J]. Environmental Engineering, 2017, 35(12): 115-118,123 (in Chinese).
|
[4] |
黄菲, 闫梦, 常建宁, 等. 不同菌糠生物炭对水体中Cu2+、Cd2+的吸附性能[J]. 环境化学, 2020, 39(4): 1116-1128. doi: 10.7524/j.issn.0254-6108.2019091604
HUANG F, YAN M, CHANG J N, et al. Adsorption performance of Cu2+ and Cd2+ in water by different biochars derived from spent mushroom substrate[J]. Environmental Chemistry, 2020, 39(4): 1116-1128 (in Chinese). doi: 10.7524/j.issn.0254-6108.2019091604
|
[5] |
魏丽, 于冰冰, 冯国杰, 等. 重金属污染河道底泥稳定化固化修复工程技术研究[J]. 环境工程, 2013, 31(增刊1): 151-155.
WEI L, YU B B, FENG G J, et al. Research on stabilization/solidification remedial technology of river sediments contaminated by heavy metals[J]. Environmental Engineering, 2013, 31(S1): 151-155 (in Chinese).
|
[6] |
李海波, 曹梦华, 吴丁山, 等. 硫化亚铁稳定化修复重金属污染湖泊底泥的效率及机理[J]. 环境工程学报, 2017, 11(5): 3258-3263.
LI H B, CAO M H, WU D S, et al. Stabilization efficiency and mechanism of heavy metals in contaminated lake sediments by ferrous sulfide[J]. Chinese Journal of Environmental Engineering, 2017, 11(5): 3258-3263 (in Chinese).
|
[7] |
刘叶, 陈靓, 徐帆, 等. 温敏性超支化聚合物淋洗重金属污染底泥的研究[J]. 中国环境科学, 2024, 44(4):2130-2136.
LIU Y, CHEN L, XU F, et al. Study on leaching of heavy metal contaminated sediment with temperature-sensitive hyperbranched polymer[J]. China Environmental Science, 2024, 44(4):2130-2136(in Chinese).
|
[8] |
赵鹏, 肖保华. 电动修复技术去除土壤重金属污染研究进展[J]. 地球与环境, 2022, 50(5): 776-786.
ZHAO P, XIAO B H. A review of heavy metal removal from soil by electrokinetic remediation[J]. Earth and Environment, 2022, 50(5): 776-786 (in Chinese).
|
[9] |
张小江, 宗志强, 叶静宏, 等. 土壤重金属污染强化电动修复研究进展[J]. 东华大学学报(自然科学版), 2021, 47(6): 91-99.
ZHANG X J, ZONG Z Q, YE J H, et al. Research progress on enhanced electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Donghua University (Natural Science), 2021, 47(6): 91-99 (in Chinese).
|
[10] |
李敏, 陈洪岳, 孙照明, 等. 电动联合法对复合重金属污染底泥的修复[J]. 环境工程学报, 2021, 15(5): 1652-1661.
LI M, CHEN H Y, SUN Z M, et al. Electrokinetic combination remediation of sediment contaminated with complex heavy metals[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1652-1661 (in Chinese).
|
[11] |
ELICKER C, SANCHES FILHO P J, CASTAGNO K R L. Electroremediation of heavy metals in sewage sludge[J]. Brazilian Journal of Chemical Engineering, 2014, 31(2): 365-371. doi: 10.1590/0104-6632.20140312s00002394
|
[12] |
TANG J, QIU Z P, TANG H J, et al. Coupled with EDDS and approaching anode technique enhanced electrokinetic remediation removal heavy metal from sludge[J]. Environmental Pollution, 2021, 272: 115975. doi: 10.1016/j.envpol.2020.115975
|
[13] |
袁静. 微波消解-ICP-MS测定土壤和底泥中的12种金属元素[J]. 中国环境监测, 2012, 28(5): 96-99.
YUAN J. Determination of 12 metals in soil and sediment by microwave digestion and ICP-MS[J]. Environmental Monitoring in China, 2012, 28(5): 96-99 (in Chinese).
|
[14] |
PAN H, HSE C Y, GAMBRELL R, et al. Fractionation of heavy metals in liquefied chromated copper arsenate 9-treated wood sludge using a modified BCR-sequential extraction procedure[J]. Chemosphere, 2009, 77(2): 201-206. doi: 10.1016/j.chemosphere.2009.07.037
|
[15] |
WANG Y C, LI A, CUI C W. Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability[J]. Chemosphere, 2021, 265: 129071. doi: 10.1016/j.chemosphere.2020.129071
|
[16] |
XIAO J, ZHOU S K, CHU L P, et al. Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride[J]. Environmental Science and Pollution Research International, 2020, 27(4): 4478-4488. doi: 10.1007/s11356-019-06990-2
|
[17] |
FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal, 2017, 316: 601-608. doi: 10.1016/j.cej.2017.01.092
|
[18] |
SCIALDONE O, RANDAZZO S, GALIA A, et al. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl[J]. Water Research, 2009, 43(8): 2260-2272. doi: 10.1016/j.watres.2009.02.014
|
[19] |
ZHANG Y J, CHU G H, DONG P, et al. Enhanced electrokinetic remediation of lead- and cadmium-contaminated paddy soil by composite electrolyte of sodium chloride and citric acid[J]. Journal of Soils and Sediments, 2018, 18(5): 1915-1924. doi: 10.1007/s11368-017-1890-2
|
[20] |
XIE N, CHEN Z, WANG H M, et al. Activated carbon coupled with citric acid in enhancing the remediation of Pb-Contaminated soil by electrokinetic method[J]. Journal of Cleaner Production, 2021, 308: 127433. doi: 10.1016/j.jclepro.2021.127433
|
[21] |
CAMESELLE C, PENA A. Enhanced electromigration and electro-osmosis for the remediation of an agricultural soil contaminated with multiple heavy metals[J]. Process Safety and Environmental Protection, 2016, 104: 209-217. doi: 10.1016/j.psep.2016.09.002
|
[22] |
李敏, 赵博华, 于禾苗, 等. 植物-电动耦合修复重金属污染土的效能及其强化机制[J]. 土木与环境工程学报(中英文),DOI:10. 11835/j. issn. 2096-6717. 2023. 082.
LI M, ZHAO B H, YU H M, et al. Remediation efficiency and strengthening mechanism of heavy metal contaminated soil under phytore-electric coupling treatment[J]. Journal of Civil and Environmental Engineering,DOI:10. 11835/j. issn. 2096-6717. 2023. 082 (in Chinese).
|
[23] |
WANG Y C, HAN Z J, LI A, et al. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents[J]. Environmental Pollution, 2021, 283: 117111. doi: 10.1016/j.envpol.2021.117111
|
[24] |
WU J N, WEI B, LV Z W, et al. To improve the performance of focusing phenomenon related to energy consumption and removal efficiency in electrokinetic remediation of Cr-contaminated soil[J]. Separation and Purification Technology, 2021, 272: 118882. doi: 10.1016/j.seppur.2021.118882
|
[25] |
高建明, 蔡宗平, 孙水裕, 等. 不同有机酸电解液循环强化电动修复重金属污染土壤的研究[J]. 环境科学学报, 2023, 43(9): 322-332.
GAO J M, CAI Z P, SUN S Y, et al. Study on circulation-enhanced electrokinetic remediation of soils contaminated by heavy metals with different organic acids as electrolytes[J]. Acta Scientiae Circumstantiae, 2023, 43(9): 322-332 (in Chinese).
|
[26] |
周书葵, 颜加情, 段毅, 等. 酒石酸-氯化铁复合电解液强化改良电动装置修复铀污染模拟土壤及机理分析[J]. 中国环境科学, 2023, 43(8): 4127-4136 .
ZHOU S K, YAN J Q, DUAN Y, et al. Mechanism of enhanced modified electrokinetic device performance in remediating simulated soil contaminated with uranium using tartaric acid-ferric chloride composite electrolyte[J]. China Environmental Science, 2023, 43(8): 4127-4136 (in Chinese).
|