[1] |
REN B, MIN F F, CHEN J, et al. Adsorption mechanism insights into CPAM structural units on kaolinite surfaces: A DFT simulation[J]. Applied Clay Science, 2020, 197: 105719. doi: 10.1016/j.clay.2020.105719
|
[2] |
MORTIMER D A. Synthetic polyelectrolytes—a review[J]. Polymer International, 1991, 25(1): 29-41. doi: 10.1002/pi.4990250107
|
[3] |
MARK H. Encyclopedia of polymer science and technology, 15 volume set[M]. New York, NY, USA: Wiley, 2014, 14: 519-520.
|
[4] |
CAULFIELD M J, QIAO G G, SOLOMON D H. Some aspects of the properties and degradation of polyacrylamides[J]. Chemical Reviews, 2002, 102(9): 3067-3084. doi: 10.1021/cr010439p
|
[5] |
邹文杰, 曹亦俊, 李维娜, 等. 煤及高岭石的选择性絮凝[J]. 煤炭学报, 2013, 38(8): 1448-1453.
ZOU W J, CAO Y J, LI W N, et al. Selective flocculation of coal and kaolinite[J]. Journal of China Coal Society, 2013, 38(8): 1448-1453 (in Chinese).
|
[6] |
常自勇, 冯其明, 欧乐明. 回水中絮凝剂对铝土矿浮选影响的研究[J]. 有色金属(选矿部分), 2014(6): 88-91.
CHANG Z Y, FENG Q M, OU L M. Study on the impact of flocculants in backwater on bauxite flotation[J]. Nonferrous Metals (Mineral Processing Section), 2014(6): 88-91 (in Chinese).
|
[7] |
HU H, LIU J F, LI C Y, et al. Anaerobic biodegradation of partially hydrolyzed polyacrylamide in long-term methanogenic enrichment cultures from production water of oil reservoirs[J]. Biodegradation, 2018, 29(3): 233-243. doi: 10.1007/s10532-018-9825-1
|
[8] |
ZHAO L M, BAO M T, YAN M, et al. Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions[J]. Bioresource Technology, 2016, 216: 95-104. doi: 10.1016/j.biortech.2016.05.054
|
[9] |
BAO M T, CHEN Q G, LI Y M, et al. Biodegradation of partially hydrolyzed polyacrylamide by bacteria isolated from production water after polymer flooding in an oil field[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 105-110.
|
[10] |
WEN Q X, CHEN Z Q, ZHAO Y, et al. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 955-959.
|
[11] |
林玉珍, 曾光明, 张娱, 等. 有机农药滴滴涕和毒死蜱生物降解机制的分子模拟研究[J]. 环境科学, 2012, 33(3): 1015-1019.
LIN Y Z, ZENG G M, ZHANG Y, et al. Biodegradation mechanism of DDT and chlorpyrifos using molecular simulation[J]. Environmental Science, 2012, 33(3): 1015-1019 (in Chinese).
|
[12] |
CHEN M, ZENG G M, LAI C, et al. Molecular basis of laccase bound to lignin: Insight from comparative studies on the interaction of Trametes versicolor laccase with various lignin model compounds[J]. RSC Advances, 2015, 5(65): 52307-52313. doi: 10.1039/C5RA07916K
|
[13] |
LIU Z F, SHAO B B, ZENG G M, et al. Effects of rhamnolipids on the removal of 2, 4, 2, 4-tetrabrominated biphenyl ether (BDE-47) by Phanerochaete chrysosporium analyzed with a combined approach of experiments and molecular docking[J]. Chemosphere, 2018, 210: 922-930. doi: 10.1016/j.chemosphere.2018.07.114
|
[14] |
LIU Y J, LIU Z F, ZENG G M, et al. Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies[J]. Journal of Hazardous Materials, 2018, 357: 10-18. doi: 10.1016/j.jhazmat.2018.05.042
|
[15] |
KÜES U. Fungal enzymes for environmental management[J]. Current Opinion in Biotechnology, 2015, 33: 268-278. doi: 10.1016/j.copbio.2015.03.006
|
[16] |
SUTHERLAND G R, HASELBACH J, AUST S D. Biodegradation of crosslinked acrylic polymers by a white-rot fungus[J]. Environmental Science and Pollution Research International, 1997, 4(1): 16-20. doi: 10.1007/BF02986258
|
[17] |
STAHL J D, CAMERON M D, HASELBACH J, et al. Biodegradation of superabsorbent polymers in soil[J]. Environmental Science and Pollution Research International, 2000, 7(2): 83-88. doi: 10.1065/espr199912.014
|
[18] |
CHEN M, ZENG G M, TAN Z Y, et al. Understanding lignin-degrading reactions of ligninolytic enzymes: Binding affinity and interactional profile[J]. PLoS One, 2011, 6(9): e25647. doi: 10.1371/journal.pone.0025647
|
[19] |
PHIL K, DAN C. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium[J]. Fungal Genetics and Biology: FG & B, 2007, 44(2): 77-87.
|
[20] |
MARTINEZ D, LARRONDO L F, PUTNAM N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6): 695-700. doi: 10.1038/nbt967
|
[21] |
韩昌福, 郑爱芳, 李大平. 聚丙烯酰胺生物降解研究[J]. 环境科学, 2006, 27(1): 151-153.
HAN C F, ZHENG A F, LI D P. Study on biodegradation of polyacrylamide[J]. Environmental Science, 2006, 27(1): 151-153 (in Chinese).
|
[22] |
DING Y, CUI K P, GUO Z, et al. Manganese peroxidase mediated oxidation of sulfamethoxazole: Integrating the computational analysis to reveal the reaction kinetics, mechanistic insights, and oxidation pathway[J]. Journal of Hazardous Materials, 2021, 415: 125719. doi: 10.1016/j.jhazmat.2021.125719
|
[23] |
SUNDARAMOORTHY M, KISHI K, GOLD M H, et al. The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-a resolution[J]. Journal of Biological Chemistry, 1994, 269(52): 32759-32767. doi: 10.1016/S0021-9258(20)30056-9
|
[24] |
SUNDARAMOORTHY M, GOLD M H, POULOS T L. Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: Implications for the catalytic mechanism[J]. Journal of Inorganic Biochemistry, 2010, 104(6): 683-690. doi: 10.1016/j.jinorgbio.2010.02.011
|
[25] |
TU M L, WANG C, CHEN C, et al. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms[J]. Food Chemistry, 2018, 256: 98-104. doi: 10.1016/j.foodchem.2018.02.107
|
[26] |
ZHAO X D, SONG L Z, FU J, et al. Experimental and DFT investigation of surface degradation of polyvinylidene fluoride membrane in alkaline solution[J]. Surface Science, 2011, 605(11/12): 1005-1015.
|
[27] |
张东晨, 刘志勇, 王涛, 等. 煤炭絮凝微生物黄孢原毛平革菌光谱及电镜研究[J]. 煤炭学报, 2010, 35(5): 825-829.
ZHANG D C, LIU Z Y, WANG T, et al. Experimental study on ultraviolet spectrum and FTIR and SEM of coal bio-flocculant phanerochaete chrysosporium[J]. Journal of China Coal Society, 2010, 35(5): 825-829 (in Chinese).
|
[28] |
WANG X K, JI G X, HAN X Y, et al. Thiazolidinedione derivatives as novel GPR120 agonists for the treatment of type 2 diabetes[J]. RSC Advances, 2022, 12(10): 5732-5742. doi: 10.1039/D1RA08925K
|
[29] |
ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1/2: 19-25. doi: 10.1016/j.softx.2015.06.001
|
[30] |
JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935. doi: 10.1063/1.445869
|
[31] |
BERENDSEN H J C, POSTMA J P M, van GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. doi: 10.1063/1.448118
|
[32] |
PARRINELLO M, RAHMAN A. Polymorphic transitions in single crystals: A new molecular dynamics method[J]. Journal of Applied Physics, 1981, 52(12): 7182-7190. doi: 10.1063/1.328693
|
[33] |
ESSMANN U, PERERA L, BERKOWITZ M L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. doi: 10.1063/1.470117
|
[34] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. doi: 10.1016/0263-7855(96)00018-5
|
[35] |
MILLER B R, McGEE T D, SWAILS J M, et al. MMPBSA. py: An efficient program for end-state free energy calculations[J]. Journal of Chemical Theory and Computation, 2012, 8(9): 3314-3321. doi: 10.1021/ct300418h
|
[36] |
VALDÉS-TRESANCO M S, VALDÉS-TRESANCO M E, VALIENTE P A, et al. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS[J]. Journal of Chemical Theory and Computation, 2021, 17(10): 6281-6291. doi: 10.1021/acs.jctc.1c00645
|
[37] |
王方略, 张东晨, 吴学凤, 等. 红球菌酰胺酶降解阴离子型聚丙烯酰胺的亲和力分析[J]. 环境化学, 2023, 42(1): 319-326. doi: 10.7524/j.issn.0254-6108.2021083103
WANG F L, ZHANG D C, WU X F, et al. Affinity analysis of anionic polyacrylamide degraded by amidase from Rhodococcus sp. N-771[J]. Environmental Chemistry, 2023, 42(1): 319-326 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021083103
|
[38] |
TU M L, LIU H X, ZHANG R Y, et al. Analysis and evaluation of the inhibitory mechanism of a novel angiotensin-I-converting enzyme inhibitory peptide derived from casein hydrolysate[J]. Journal of Agricultural and Food Chemistry, 2018, 66(16): 4139-4144. doi: 10.1021/acs.jafc.8b00732
|
[39] |
CASSIDY C E, SETZER W N. Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis[J]. Journal of Molecular Modeling, 2010, 16(2): 311-326. doi: 10.1007/s00894-009-0547-5
|
[40] |
JALKUTE C B, BARAGE S H, SONAWANE K D. Insight into molecular interactions of Aβ peptide and gelatinase from Enterococcus faecalis: A molecular modeling approach[J]. RSC Advances, 2015, 5(14): 10488-10496. doi: 10.1039/C4RA09354B
|