[1] LUO Q, DING N N, LIU Y F, et al. Metabolic engineering of microorganisms to produce pyruvate and derived compounds[J]. Molecules, 2023, 28(3): 1418-1440. doi: 10.3390/molecules28031418
[2] MCCOMMIS K S, FINCK B N. Mitochondrial pyruvate transport: A historical perspective and future research directions[J]. The Biochemical Journal, 2015, 466(3): 443-454. doi: 10.1042/BJ20141171
[3] 李述文, 韩广甸, 赵树讳. 有机制备化学手册[M]. 北京: 石油工业出版社, 1997. LI S W, HAN G D, ZHAO S H. Handbook of organic preparation chemistry [M]. Beijing: Petroleum Industry Press, 1997(in Chinese).
[4] BOLAÑOS J P, ALMEIDA A, MONCADA S. Glycolysis: A bioenergetic or a survival pathway?[J]. Trends in Biochemical Sciences, 2010, 35(3): 145-149. doi: 10.1016/j.tibs.2009.10.006
[5] MENDZ G L, HAZELL S L, BURNS B P. The Entner-Doudoroff pathway in Helicobacter pylori[J]. Archives of Biochemistry and Biophysics, 1994, 312(2): 349-356. doi: 10.1006/abbi.1994.1319
[6] YUAN L, QIN Y L, ZOU Z C, et al. Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction[J]. Journal of Bioscience and Bioengineering, 2022, 134(6): 528-533. doi: 10.1016/j.jbiosc.2022.08.010
[7] LEY J D, CORNUT S. Direct oxidation of glucose by aerobacter sp[J]. Nature, 1951, 168: 515-516. doi: 10.1038/168515a0
[8] CHANDEL N S. Glycolysis[J]. Cold Spring Harbor Perspectives in Biology, 2021, 13(5): a040535. doi: 10.1101/cshperspect.a040535
[9] SUTTER J M, TÄSTENSEN J B, JOHNSEN U, et al. Key enzymes of the semiphosphorylative entner-doudoroff pathway in the haloarchaeon Haloferax volcanii: Characterization of glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase[J]. Journal of Bacteriology, 2016, 198(16): 2251-2262. doi: 10.1128/JB.00286-16
[10] REY G, VALEKUNJA U K, FEENEY K A, et al. The pentose phosphate pathway regulates the circadian clock[J]. Cell Metabolism, 2016, 24(3): 462-473. doi: 10.1016/j.cmet.2016.07.024
[11] VANDER HEIDEN M G, CANTLEY L C, THOMPSON C B. Understanding the Warburg effect: The metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930): 1029-1033. doi: 10.1126/science.1160809
[12] ZHOU S H, DING N N, HAN R H, et al. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories[J]. Bioresource Technology, 2023, 379: 128986-129004. doi: 10.1016/j.biortech.2023.128986
[13] 李颖, 关国华. 微生物生理学[M]. 北京: 科学出版社, 2013. LI Y, GUAN G H. Microbial physiology[M]. Beijing: Science Press, 2013(in Chinese).
[14] HASHEM M, ALAMRI S A, ASSERI T A Y, et al. On the optimization of fermentation conditions for enhanced bioethanol yields from starchy biowaste via yeast co-cultures[J]. Sustainability, 2021, 13(4): 1890-1903. doi: 10.3390/su13041890
[15] de VUYST L, van KERREBROECK S, LEROY F. Microbial ecology and process technology of sourdough fermentation[J]. Advances in Applied Microbiology, 2017, 100: 49-160.
[16] CHIDI B S, BAUER F F, ROSSOUW D. The impact of changes in environmental conditions on organic acid production by commercial wine yeast strains[J]. South African Journal of Enology and Viticulture, 2018, 39(2): 297-304.
[17] 王晓娜, 田开仁, 吴昊, 等. 微生物合成乳酸的细胞工厂构建研究进展[J]. 食品与发酵工业, 2023: 1-9. WANG X N, TIAN K R, WU H, et al. Research progress on the construction of cell factories for microbial synthesis of lactic acid [J] Food and Fermentation Industry, 2023: 1-9(in Chinese).
[18] 张克男. 丙酸发酵工艺优化研究[D]. 保定: 河北大学, 2020. ZHANG K N. Study on the optimization of propionic acid fermentation process [D]. Baoding: Hebei University, 2020(in Chinese).
[19] 艾斌凌. 基于混合菌群的水稻秸秆丁酸发酵过程优化与机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. AI B L. Fermentative process optimization and mechanisms of butyric acid production from rice straw with undefined mixed culture[D]. Harbin: Harbin Institute of Technology, 2014 (in Chinese).
[20] 张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展[J]. 化工学报, 2020, 71(5): 1964-1975. ZHANG Y, QIU X M, CHEN C P, et al. Recent progress in microbial production of succinic acid[J]. CIESC Journal, 2020, 71(5): 1964-1975 (in Chinese).
[21] MAI V Q, MEERE M. Modelling the phosphorylation of glucose by human hexokinase I[J]. Mathematics, 2021, 9(18): 2315-2339. doi: 10.3390/math9182315
[22] AL-ZIAYDI A G, AL-SHAMMARI A M, HAMZAH M I, et al. Hexokinase inhibition using D-Mannoheptulose enhances oncolytic Newcastle disease virus-mediated killing of breast cancer cells[J]. Cancer Cell International, 2020, 20(1): 420-430. doi: 10.1186/s12935-020-01514-2
[23] WANG H Y, ZHAO P J, SHEN X, et al. Genome-wide survey of the phosphofructokinase family in cassava and functional characterization in response to oxygen-deficient stress[J]. BMC Plant Biology, 2021, 21(1): 376-391. doi: 10.1186/s12870-021-03139-7
[24] SCHORMANN N, HAYDEN K L, LEE P, et al. An overview of structure, function, and regulation of pyruvate kinases[J]. Protein Science: a Publication of the Protein Society, 2019, 28(10): 1771-1784. doi: 10.1002/pro.3691
[25] REN X L, HUANG X Y, WU Q, et al. Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2[J]. Chinese Chemical Letters, 2021, 32(10): 3087-3089. doi: 10.1016/j.cclet.2021.03.081
[26] HAUF J, ZIMMERMANN F K, MÜLLER S. Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2000, 26(9/10): 688-698.
[27] EMMERLING M, BAILEY J E, SAUER U. Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes[J]. Metabolic Engineering, 1999, 1(2): 117-127. doi: 10.1006/mben.1998.0109
[28] BRAGA R, HECQUET L, BLONSKI C. Slow-binding inhibition of 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase[J]. Bioorganic & Medicinal Chemistry, 2004, 12(11): 2965-2972.
[29] MORITA K, NOMURA Y, ISHII J, et al. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner-Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production[J]. Journal of Bioscience and Bioengineering, 2017, 124(3): 263-270. doi: 10.1016/j.jbiosc.2017.04.005
[30] BUI C V, BOSWELL C W, CIRUNA B, et al. Apollo-NADP+ reveals in vivo adaptation of NADPH/NADP+ metabolism in electrically activated pancreatic β cells[J]. Science Advances, 2023, 9(40): eadi8317-8328. doi: 10.1126/sciadv.adi8317
[31] YANG M H, ZHANG X. Construction of pyruvate producing strain with intact pyruvate dehydrogenase and genome-wide transcription analysis[J]. World Journal of Microbiology and Biotechnology, 2017, 33(3): 59-68. doi: 10.1007/s11274-016-2202-5
[32] ŠKERLOVÁ J, BERNDTSSON J, NOLTE H, et al. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion[J]. Nature Communications, 2021, 12(1): 5277-5287. doi: 10.1038/s41467-021-25570-y
[33] SGRIGNANI J, CHEN J J, ALIMONTI A, et al. How phosphorylation influences E1 subunit pyruvate dehydrogenase: A computational study[J]. Scientific Reports, 2018, 8(1): 14683-14694. doi: 10.1038/s41598-018-33048-z
[34] KWAK C H, LEE J H, KIM E Y, et al. Huzhangoside A suppresses tumor growth through inhibition of pyruvate dehydrogenase kinase activity[J]. Cancers, 2019, 11(5): 712-725. doi: 10.3390/cancers11050712
[35] MAZZOLI R, OLSON D G, LYND L R. Construction of lactic acid overproducing Clostridium thermocellum through enhancement of lactate dehydrogenase expression[J]. Enzyme and Microbial Technology, 2020, 141: 109645-109686. doi: 10.1016/j.enzmictec.2020.109645
[36] TIAN L, PEROT S J, HON S, et al. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase[J]. Microbial Cell Factories, 2017, 16(1): 171-181. doi: 10.1186/s12934-017-0783-9
[37] 于慧敏, 马玉超. 工业微生物代谢途径调控的基因敲除策略[J]. 生物工程学报, 2010, 26(9): 1199-1208. YU H M, MA Y C. Gene knockout strategies for metabolic pathway regulation in industrial microbes[J]. Chinese Journal of Biotechnology, 2010, 26(9): 1199-1208(in Chinese).
[38] YOKOTA A, HENMI M, TAKAOKA N, et al. Enhancement of glucose metabolism in a pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity[J]. Journal of Fermentation and Bioengineering, 1997, 83(2): 132-138. doi: 10.1016/S0922-338X(97)83571-4
[39] TOMAR A, EITEMAN M A, ALTMAN E. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2003, 62(1): 76-82. doi: 10.1007/s00253-003-1234-6
[40] ZELIĆ B, GOSTOVIĆ S, VUORILEHTO K, et al. Process strategies to enhance pyruvate production with recombinant Escherichia coli: From repetitive fed-batch to in situ product recovery with fully integrated electrodialysis[J]. Biotechnology and Bioengineering, 2004, 85(6): 638-646. doi: 10.1002/bit.10820
[41] MOXLEY W C, EITEMAN M A. Pyruvate production by Escherichia coli by use of pyruvate dehydrogenase variants[J]. Applied and Environmental Microbiology, 2021, 87(13): e0048721. doi: 10.1128/AEM.00487-21
[42] 沈冬钱, 冯晓雨, 林东强, 等. 不同碳源对大肠杆菌lpdA突变菌累积丙酮酸的影响[J]. 生物工程学报, 2009, 25(9): 1345-1351. SHEN D Q, FENG X Y, LIN D Q, et al. Effect of different carbon sources on pyruvic acid production by using lpdA gene knockout Escherichia coli [J] Chinese Journal of Biotechnology, 2009, 25(9): 1345-1351(in Chinese).
[43] NAKASHIMA N, OHNO S, YOSHIKAWA K, et al. A vector library for silencing central carbon metabolism genes with antisense Rnas in Escherichia coli[J]. Applied and Environmental Microbiology, 2014, 80(2): 564-573. doi: 10.1128/AEM.02376-13
[44] WANG D P, WANG L, HOU L, et al. Metabolic engineering of Saccharomyces cerevisiae for accumulating pyruvic acid[J]. Annals of Microbiology, 2015, 65(4): 2323-2331. doi: 10.1007/s13213-015-1074-5
[45] 李亿, 秦艳, 申乃坤, 等. 酿酒酵母pdc基因缺陷菌株的构建及其丙酮酸发酵特性[J]. 食品与发酵工业, 2020, 46(8): 7-13. LI Y, QIN Y, SHEN N K, et al. Construction of pdc-deficient Saccharomyces cerevisiae and its pyruvic acid fermentation characteristics[J]. Food and Fermentation Industries, 2020, 46(8): 7-13(in Chinese).
[46] WANG S M, YANG Y Y, YU K C, et al. Engineering of Yarrowia lipolytica for producing pyruvate from glycerol[J]. Biotech, 2022, 12(4): 98-107. doi: 10.1007/s13205-022-03158-7
[47] BENSON P J, PURCELL-MEYERINK D, HOCART C H, et al. Factors altering pyruvate excretion in a glycogen storage mutant of the cyanobacterium, Synechococcus PCC7942[J]. Frontiers in Microbiology, 2016, 7(5): 475-486.
[48] SUO F, LIU J M, CHEN J, et al. Efficient production of pyruvate using metabolically engineered Lactococcus lactis[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 611701-611713. doi: 10.3389/fbioe.2020.611701
[49] XU G Q, HUA Q, DUAN N J, et al. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production[J]. Yeast, 2012, 29(6): 209-217. doi: 10.1002/yea.2902
[50] YOKOTA A, SHIMIZU H, TERASAWA Y, et al. Pyruvic acid production by a lipoic acid auxotroph of Escherichia coliW1485[J]. Applied Microbiology and Biotechnology, 1994, 41(6): 638-643. doi: 10.1007/BF00167278
[51] KAMZOLOVA S V, MORGUNOV I G. Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans[J]. Applied Microbiology and Biotechnology, 2016, 100(17): 7689-7697. doi: 10.1007/s00253-016-7618-1
[52] 刘立明. Torulopsis glabrata过量合成丙酮酸: 丙酮酸流向和代谢流的调控[D]. 无锡: 江南大学, 2003. LIU L M. Excessive synthesis of pyruvate by Torulopsis glabrata: regulation of pyruvate flow and metabolic flux [D]. Wuxi: Jiangnan University, 2003(in Chinese).
[53] CHAN A H Y, HO T C S, AGYEI-OWUSU K, et al. Synthesis of pyrrothiamine, a novel thiamine analogue, and evaluation of derivatives as potent and selective inhibitors of pyruvate dehydrogenase[J]. Organic & Biomolecular Chemistry, 2022, 20(45): 8855-8858.
[54] 王涛. 靶标酶抑制剂的设计、合成与性质研究[D]. 武汉: 华中师范大学, 2004. WANG T. Design, synthesis, and properties of target enzyme inhibitors [D]. Wuhan: Central China Normal University, 2004(in Chinese).
[55] SONG Z X, HE H W, FAN Y T, et al. Effects of the inhibitor of pyruvate dehydrogenase multi-enzyme complex on hydrogen production by fermentative microbes[J]. International Journal of Green Energy, 2017, 14(3): 330-335. doi: 10.1080/15435075.2016.1255635