[1] ABDEL-SHAFY H I, MANSOUR M S M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation[J]. Egyptian Journal of Petroleum, 2016, 25(1): 107-123. doi: 10.1016/j.ejpe.2015.03.011
[2] SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47(12): 6415-6424.
[3] MINERO C, MAURINO V, BORGHESI D, et al. An overview of possible processes able to account for the occurrence of nitro-PAHs in Antarctic particulate matter[J]. Microchemical Journal, 2010, 96(2): 213-217. doi: 10.1016/j.microc.2009.07.013
[4] 马静, 吴明红, 徐刚, 等. 结构-活性关系对氯代多环芳烃性质的预测[J]. 上海大学学报(自然科学版), 2010, 16(5): 536-540. MA J, WU M H, XU G, et al. Physical/chemical property estimation for Cl-PAHs congeners by quantitative structure-activity relationship[J]. Journal of Shanghai University (Natural Science Edition), 2010, 16(5): 536-540 (in Chinese).
[5] ZHAO J, TIAN W J, LIU S H, et al. Fate of parent and substituted polycyclic aromatic hydrocarbons in SBR/MBBR treatment process: Experimental value against model prediction[J]. Journal of Ocean University of China, 2023, 22(2): 479-489. doi: 10.1007/s11802-023-5277-2
[6] HUANG L, CHERNYAK S M, BATTERMAN S A. PAHs (polycyclic aromatic hydrocarbons), nitro-PAHs, and hopane and sterane biomarkers in sediments of southern Lake Michigan, USA[J]. Science of the Total Environment, 2014, 487: 173-186. doi: 10.1016/j.scitotenv.2014.03.131
[7] HONG W J, JIA H L, LI Y F, et al. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China[J]. Ecotoxicology and Environmental Safety, 2016, 128: 11-20. doi: 10.1016/j.ecoenv.2016.02.003
[8] GOLZADEH N, BARST B D, BAKER J M, et al. Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta, Canada[J]. Environmental Pollution, 2021, 275: 116625. doi: 10.1016/j.envpol.2021.116625
[9] ZHANG X, WANG X L, ZHAO X L, et al. Important but overlooked potential risks of substituted polycyclic aromatic hydrocarbon: Looking below the tip of the iceberg[J]. Reviews of Environmental Contamination and Toxicology, 2022, 260(1): 18. doi: 10.1007/s44169-022-00021-x
[10] CHLEBOWSKI A C, GARCIA G R, La DU J K, et al. Mechanistic investigations into the developmental toxicity of nitrated and heterocyclic PAHs[J]. Toxicological Sciences, 2017, 157(1): 246-259. doi: 10.1093/toxsci/kfx035
[11] KNECHT A L, GOODALE B C, TRUONG L, et al. Comparative developmental toxicity of environmentally relevant oxygenated PAHs[J]. Toxicology and Applied Pharmacology, 2013, 271(2): 266-275. doi: 10.1016/j.taap.2013.05.006
[12] JIANG S L, YANG J, FANG D A. Histological, oxidative and immune changes in response to 9, 10-phenanthrenequione, retene and phenanthrene in Takifugu obscurus liver[J]. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(7): 827-836.
[13] MU J L, WANG J Y, JIN F, et al. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma)[J]. Marine Pollution Bulletin, 2014, 85(2): 505-515. doi: 10.1016/j.marpolbul.2014.01.040
[14] 江桂斌. 环境样品前处理技术[M]. 2版. 北京: 化学工业出版社, 2016. JIANG G B. Environmental sample preparation[M]. 2nd ed. Beijing: Chemical Industry Press, 2016(in Chinese).
[15] BANDOWE B A M, MEUSEL H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment-A review[J]. Science of the Total Environment, 2017, 581-582: 237-257. doi: 10.1016/j.scitotenv.2016.12.115
[16] OHURA T, SAWADA K I, AMAGAI T, et al. Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: Occurrence, photostability, and AhR activity[J]. Environmental Science & Technology, 2009, 43(7): 2269-2275.
[17] ÅBERG A, MACLEOD M, WIBERG K. Physical-chemical property data for dibenzo- p -dioxin (DD), dibenzofuran (DF), and chlorinated DD/Fs: A critical review and recommended values[J]. Journal of Physical and Chemical Reference Data, 2008, 37(4): 1997-2008. doi: 10.1063/1.3005673
[18] MANOUSI N, DELIYANNI E A, ROSENBERG E, et al. Ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons from water samples with a magnetic polyaniline modified graphene oxide nanocomposite[J]. Journal of Chromatography A, 2021, 1645: 462104. doi: 10.1016/j.chroma.2021.462104
[19] LIU Q Z, XU X, WANG L, et al. Simultaneous determination of forty-two parent and halogenated polycyclic aromatic hydrocarbons using solid-phase extraction combined with gas chromatography-mass spectrometry in drinking water[J]. Ecotoxicology and Environmental Safety, 2019, 181: 241-247. doi: 10.1016/j.ecoenv.2019.06.011
[20] LI J K, LIU Y X, SU H, et al. In situ hydrothermal growth of a zirconium-based porphyrinic metal-organic framework on stainless steel fibers for solid-phase microextraction of nitrated polycyclic aromatic hydrocarbons[J]. Microchimica Acta, 2017, 184(10): 3809-3815. doi: 10.1007/s00604-017-2403-0
[21] WANG X L, KANG H Y, WU J F. Determination of chlorinated polycyclic aromatic hydrocarbons in water by solid-phase extraction coupled with gas chromatography and mass spectrometry[J]. Journal of Separation Science, 2016, 39(9): 1742-1748. doi: 10.1002/jssc.201501286
[22] GUIÑEZ M, CANALES R, MARTINEZ L D, et al. Solvent-based de-emulsification dispersive liquid-liquid microextraction coupled with UPLC-MS/MS for the fast determination of ultratrace levels of nitrated and oxygenated polycyclic aromatic hydrocarbons in environmental samples[J]. Analytical Methods, 2018, 10(8): 910-919. doi: 10.1039/C8AY00021B
[23] GUIÑEZ M, BAZAN C, MARTINEZ L D, et al. Determination of nitrated and oxygenated polycyclic aromatic hydrocarbons in water samples by a liquid–liquid phase microextraction procedure based on the solidification of a floating organic drop followed by solvent assisted back-extraction and liquid chromatography-tandem mass spectrometry[J]. Microchemical Journal, 2018, 139: 164-173. doi: 10.1016/j.microc.2018.02.027
[24] LI J Q, ZHAO B, GUO L Y, et al. Synthesis of hypercrosslinked polymers for efficient solid-phase microextraction of polycyclic aromatic hydrocarbons and their derivatives followed by gas chromatography-mass spectrometry determination[J]. Journal of Chromatography A, 2021, 1653: 462428. doi: 10.1016/j.chroma.2021.462428
[25] CHONDO Y, LI Y, MAKINO F, et al. Determination of selected nitropolycyclic aromatic hydrocarbons in water samples[J]. Chemical and Pharmaceutical Bulletin, 2013, 61(12): 1269-1274. doi: 10.1248/cpb.c13-00547
[26] TROUVÉ G, NGO C, ALMOUALLEM W, et al. Development of a liquid/liquid extraction method and GC/MS analysis dedicated to the quantitative analysis of PAHs and O-PACs in groundwater from contaminated sites and soils[J]. Polycyclic Aromatic Compounds, 2022, 42(7): 4000-4018. doi: 10.1080/10406638.2021.1880449
[27] ZHU T, RAO Z, GUO F, et al. Simultaneous determination of 32 polycyclic aromatic hydrocarbon derivatives and parent PAHs using gas chromatography-mass spectrometry: Application in groundwater screening[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(5): 664-671. doi: 10.1007/s00128-018-2462-x
[28] YAN K, WU S M, GONG G Y, et al. Simultaneous determination of typical chlorinated, oxygenated, and European union priority polycyclic aromatic hydrocarbons in milk samples and milk powders[J]. Journal of Agricultural and Food Chemistry, 2021, 69(13): 3923-3931. doi: 10.1021/acs.jafc.1c00283
[29] dos SANTOS R R, VIDOTTI LEAL L D, de LOURDES CARDEAL Z, et al. Determination of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives in coffee brews using an efficient cold fiber-solid phase microextraction and gas chromatography mass spectrometry method[J]. Journal of Chromatography A, 2019, 1584: 64-71. doi: 10.1016/j.chroma.2018.11.046
[30] 莫李桂, 马盛韬, 李会茹, 等. 气相色谱/三重四极杆串联质谱法检测土壤中氯代多环芳烃和溴代多环芳烃[J]. 分析化学, 2013, 41(12): 1825-1830. MO L G, MA S T, LI H R, et al. Determination of chlorinated-and brominated-polycyclic aromatic hydrocarbons in soil samples by gas chromatography coupled with triple quadrupole mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(12): 1825-1830 (in Chinese).
[31] PULLEYBLANK C, KELLEHER B, CAMPO P, et al. Recovery of polycyclic aromatic hydrocarbons and their oxygenated derivatives in contaminated soils using aminopropyl silica solid phase extraction[J]. Chemosphere, 2020, 258: 127314. doi: 10.1016/j.chemosphere.2020.127314
[32] FERNANDO S, JOBST K J, TAGUCHI V Y, et al. Identification of the halogenated compounds resulting from the 1997 Plastimet Inc. fire in Hamilton, Ontario, using comprehensive two-dimensional gas chromatography and (ultra)high resolution mass spectrometry[J]. Environmental Science & Technology, 2014, 48(18): 10656-10663.
[33] SANKODA K, KURIBAYASHI T, NOMIYAMA K, et al. Occurrence and source of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in tidal flats of the Ariake Bay, Japan[J]. Environmental Science & Technology, 2013, 47(13): 7037-7044.
[34] 孙建林, 倪宏刚, 丁超, 等. 深圳茅洲河表层沉积物卤代多环芳烃污染研究[J]. 环境科学, 2012, 33(9): 3089-3096. SUN J L, NI H G, DING C, et al. Halogenated polycyclic aromatic hydrocarbons in surface sediments of Maozhou River, Shenzhen[J]. Environmental Science, 2012, 33(9): 3089-3096 (in Chinese).
[35] MASUDA M, WANG Q, TOKUMURA M, et al. Quantification of brominated polycyclic aromatic hydrocarbons in environmental samples by liquid chromatography tandem mass spectrometry with atmospheric pressure photoionization and post-column infusion of dopant[J]. Analytical Sciences, 2020, 36(9): 1105-1111. doi: 10.2116/analsci.20P025
[36] MA J, HORII Y, CHENG J P, et al. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China[J]. Environmental Science & Technology, 2009, 43(3): 643-649.
[37] 王丽, 金芬, 李敏洁, 等. 分散固相萃取-气相色谱-串联质谱法测定蔬菜中多环芳烃及卤代多环芳烃[J]. 分析化学, 2013, 41(6): 869-875. WANG L, JIN F, LI M J, et al. Determination of polycyclic aromatic hydrocarbons and halogenated polycyclic aromatic hydrocarbons in vegetable by gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2013, 41(6): 869-875 (in Chinese).
[38] de WITTE B, WALGRAEVE C, DEMEESTERE K, et al. Oxygenated polycyclic aromatic hydrocarbons in mussels: Analytical method development and occurrence in the Belgian coastal zone[J]. Environmental Science and Pollution Research, 2019, 26(9): 9065-9078. doi: 10.1007/s11356-019-04259-2
[39] ZASTROW L, SPEER K, SCHWIND K H, et al. A sensitive GC-HRMS method for the simultaneous determination of parent and oxygenated polycyclic aromatic hydrocarbons in barbecued meat and meat substitutes[J]. Food Chemistry, 2021, 365: 130625. doi: 10.1016/j.foodchem.2021.130625
[40] TANG J, MA S T, LIU R R, et al. The pollution profiles and human exposure risks of chlorinated and brominated PAHs in indoor dusts from e-waste dismantling workshops: Comparison of GC-MS, GC-MS/MS and GC × GC-MS/MS determination methods[J]. Journal of Hazardous Materials, 2020, 394: 122573. doi: 10.1016/j.jhazmat.2020.122573
[41] HORII Y, OK G, OHURA T, et al. Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators[J]. Environmental Science & Technology, 2008, 42(6): 1904-1909.
[42] 张宇, 王椿, 辛悦, 等. 自组装固相萃取-气相色谱-质谱法测定大气细颗粒物中溴代多环芳烃类化合物[J]. 分析化学, 2023, 51(10): 1641-1650. ZHANG Y, WANG C, XIN Y, et al. Determination of brominated polycyclic aromatic hydrocarbons in atmospheric fine particulate matter by self-assembled solid phase extraction-gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2023, 51(10): 1641-1650 (in Chinese).
[43] NYIRI Z, NOVÁK M, BODAI Z, et al. Determination of particulate phase polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2016, 1472: 88-98. doi: 10.1016/j.chroma.2016.10.021
[44] VUONG Q T, THANG P Q, NGUYEN T N T, et al. Seasonal variation and gas/particle partitioning of atmospheric halogenated polycyclic aromatic hydrocarbons and the effects of meteorological conditions in Ulsan, South Korea[J]. Environmental Pollution, 2020, 263(Pt A): 114592.
[45] KAKIMOTO K, NAGAYOSHI H, KONISHI Y, et al. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia[J]. Chemosphere, 2014, 111: 40-46. doi: 10.1016/j.chemosphere.2014.03.072
[46] JIN R, LIU G R, ZHENG M H, et al. Congener-specific determination of ultratrace levels of chlorinated and brominated polycyclic aromatic hydrocarbons in atmosphere and industrial stack gas by isotopic dilution gas chromatography/high resolution mass spectrometry method[J]. Journal of Chromatography A, 2017, 1509: 114-122. doi: 10.1016/j.chroma.2017.06.022
[47] AHMED T M, BERGVALL C, ÅBERG M, et al. Determination of oxygenated and native polycyclic aromatic hydrocarbons in urban dust and diesel particulate matter standard reference materials using pressurized liquid extraction and LC-GC/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(2): 427-438. doi: 10.1007/s00216-014-8304-8
[48] LI L J, HO S S H, CHOW J C, et al. Quantification of oxygenated polycyclic aromatic hydrocarbons in ambient aerosol samples using in-injection port thermal desorption-gas chromatography/mass spectrometry: Method exploration and validation[J]. International Journal of Mass Spectrometry, 2018, 433: 25-30. doi: 10.1016/j.ijms.2018.08.005
[49] SUN Z, ZHU Y, ZHUO S J, et al. Occurrence of nitro- and oxy-PAHs in agricultural soils in Eastern China and excess lifetime cancer risks from human exposure through soil ingestion[J]. Environmental International, 2017, 108: 261-270. doi: 10.1016/j.envint.2017.09.001
[50] LI W, WANG C, SHEN H Z, et al. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in Northern China[J]. Environmental Pollution, 2015, 197: 156-164. doi: 10.1016/j.envpol.2014.12.019
[51] TUTINO M, Di GILIO A, LARICCHIUTA A, et al. An improved method to determine PM-bound nitro-PAHs in ambient air[J]. Chemosphere, 2016, 161: 463-469. doi: 10.1016/j.chemosphere.2016.07.015
[52] XU C, GAO L R, ZHENG M H, et al. Nontarget screening of polycyclic aromatic compounds in atmospheric particulate matter using ultrahigh resolution mass spectrometry and comprehensive two-dimensional gas chromatography[J]. Environmental Science & Technology, 2021, 55(1): 109-119.
[53] WEI S L, HUANG B, LIU M, et al. Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China[J]. Atmospheric Research, 2012, 109/110: 76-83. doi: 10.1016/j.atmosres.2012.01.009
[54] BANDOWE B A, MEUSEL H, HUANG R J, et al. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment[J]. Science of the Total Environment, 2014, 473/474: 77-87. doi: 10.1016/j.scitotenv.2013.11.108
[55] WANG J Z, XU H M, GUINOT B, et al. Concentrations, sources and health effects of parent, oxygenated- and nitrated- polycyclic aromatic hydrocarbons (PAHs) in middle-school air in Xi'an, China[J]. Atmospheric Research, 2017, 192: 1-10. doi: 10.1016/j.atmosres.2017.03.006
[56] WANG W, JING L, ZHAN J, et al. Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010[J]. Atmospheric Environment, 2014, 89: 242-248. doi: 10.1016/j.atmosenv.2014.02.031
[57] BARRADO A I, GARCÍA S, CASTRILLEJO Y, et al. Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors[J]. Atmospheric Environment, 2013, 67: 385-393. doi: 10.1016/j.atmosenv.2012.10.030
[58] ALVES C A, VICENTE A M, CUSTÓDIO D, et al. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities[J]. Science of the Total Environment, 2017, 595: 494-504. doi: 10.1016/j.scitotenv.2017.03.256
[59] SOUZA K F, CARVALHO L R F, ALLEN A G, et al. Diurnal and nocturnal measurements of PAH, nitro-PAH, and oxy-PAH compounds in atmospheric particulate matter of a sugar cane burning region[J]. Atmospheric Environment, 2014, 83: 193-201. doi: 10.1016/j.atmosenv.2013.11.007
[60] dos SANTOS R R, de LOURDES CARDEAL Z, MENEZES H C. Phase distribution of polycyclic aromatic hydrocarbons and their oxygenated and nitrated derivatives in the ambient air of a Brazilian urban area[J]. Chemosphere, 2020, 250: 126223. doi: 10.1016/j.chemosphere.2020.126223
[61] CHUESAARD T, CHETIYANUKORNKUL T, KAMEDA T, et al. Influence of biomass burning on the levels of atmospheric polycyclic aromatic hydrocarbons and their nitro derivatives in Chiang Mai, Thailand[J]. Aerosol and Air Quality Research, 2014, 14(4): 1247-1257. doi: 10.4209/aaqr.2013.05.0161
[62] NIU X Y, HO S S H, HO K F, et al. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region[J]. Environmental Pollution, 2017, 231(Pt 1): 1075-1084.
[63] REN Y Q, ZHOU B H, TAO J, et al. Composition and size distribution of airborne particulate PAHs and oxygenated PAHs in two Chinese megacities[J]. Atmospheric Research, 2017, 183: 322-330. doi: 10.1016/j.atmosres.2016.09.015
[64] LEE H H, CHOI N R, LIM H B, et al. Characteristics of oxygenated PAHs in PM10 at Seoul, Korea[J]. Atmospheric Pollution Research, 2018, 9(1): 112-118. doi: 10.1016/j.apr.2017.07.007
[65] SHI M W, ZHANG R Z, WANG Y X, et al. Health risk assessments of polycyclic aromatic hydrocarbons and chlorinated/brominated polycyclic aromatic hydrocarbons in urban air particles in a haze frequent area in China[J]. Emerging Contaminants, 2020, 6: 172-178. doi: 10.1016/j.emcon.2020.04.002
[66] MA J, CHEN Z Y, WU M H, et al. Airborne PM2.5/PM10-associated chlorinated polycyclic aromatic hydrocarbons and their parent compounds in a suburban area in Shanghai, China[J]. Environmental Science & Technology, 2013, 47(14): 7615-7623.
[67] 孙建林, 常文静, 陈正侠, 等. 深圳大气颗粒物中卤代多环芳烃污染研究[J]. 环境科学, 2015, 36(5): 1513-1522. SUN J L, CHANG W J, CHEN Z X, et al. Pollution of halogenated polycyclic aromatic hydrocarbons in atmospheric particulate matters of Shenzhen[J]. Environmental Science, 2015, 36(5): 1513-1522 (in Chinese).
[68] JIN R, BU D, LIU G R, et al. New classes of organic pollutants in the remote continental environment - Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau[J]. Environment International, 2020, 137: 105574. doi: 10.1016/j.envint.2020.105574
[69] OHURA T, KAMIYA Y, IKEMORI F. Local and seasonal variations in concentrations of chlorinated polycyclic aromatic hydrocarbons associated with particles in a Japanese megacity[J]. Journal of Hazardous Materials, 2016, 312: 254-261. doi: 10.1016/j.jhazmat.2016.03.072
[70] BANDOWE B A M, LUESO M G, WILCKE W. Oxygenated polycyclic aromatic hydrocarbons and azaarenes in urban soils: A comparison of a tropical city (Bangkok) with two temperate cities (Bratislava and Gothenburg)[J]. Chemosphere, 2014, 107: 407-414. doi: 10.1016/j.chemosphere.2014.01.017
[71] OHURA T, KITAZAWA A, AMAGAI T. Seasonal variability of 1-chloropyrene on atmospheric particles and photostability in toluene[J]. Chemosphere, 2004, 57(8): 831-837. doi: 10.1016/j.chemosphere.2004.08.069
[72] GARCIA K O, TEIXEIRA E C, AGUDELO- CASTAÑEDA D M, et al. Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic[J]. Science of the Total Environment, 2014, 479/480: 57-65. doi: 10.1016/j.scitotenv.2014.01.126
[73] ISHAQ R, NÄF C, ZEBÜHR Y, et al. PCBs, PCNs, PCDD/Fs, PAHs and Cl-PAHs in air and water particulate samples: Patterns and variations[J]. Chemosphere, 2003, 50(9): 1131-1150. doi: 10.1016/S0045-6535(02)00701-4
[74] WEI C, BANDOWE B A, HAN Y M, et al. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (alkyl-PAHs, oxygenated-PAHs, nitrated-PAHs and azaarenes) in urban road dusts from Xi'an, Central China[J]. Chemosphere, 2015, 134: 512-520. doi: 10.1016/j.chemosphere.2014.11.052
[75] CAI C Y, LI J Y, WU D, et al. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, Eastern China[J]. Chemosphere, 2017, 178: 301-308. doi: 10.1016/j.chemosphere.2017.03.057
[76] MA T, KONG J J, LI W D, et al. Inventory, source and health risk assessment of nitrated and parent PAHs in agricultural soils over a rural river in Southeast China[J]. Chemosphere, 2023, 329: 138688. doi: 10.1016/j.chemosphere.2023.138688
[77] NIEDERER M. Determination of polycyclic aromatic hydrocarbons and substitutes (Nitro-, Oxy-PAHs) in urban soil and airborne particulate by GC-MS and NCI-MS/MS[J]. Environmental Science and Pollution Research, 1998, 5(4): 209-216. doi: 10.1007/BF02986403
[78] PHAM C T, TANG N, TORIBA A, et al. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in atmospheric particles and soil at a traffic site in Hanoi, Vietnam[J]. Polycyclic Aromatic Compounds, 2015, 35(5): 355-371. doi: 10.1080/10406638.2014.903284
[79] OBRIST D, ZIELINSKA B, PERLINGER J A. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four U. S. remote forests[J]. Chemosphere, 2015, 134: 98-105. doi: 10.1016/j.chemosphere.2015.03.087
[80] BANDOWE B A M, BIGALKE M, KOBZA J, et al. Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant[J]. Science of the Total Environment, 2018, 630: 83-95. doi: 10.1016/j.scitotenv.2018.02.109
[81] MA J, ZHENG J S, CHEN Z Y, et al. Chlorinated polycyclic aromatic hydrocarbons in urban surface dust and soil of Shanghai, China[J]. Advanced Materials Research, 2012, 610/611/612/613: 2989-2994.
[82] WANG Q, MIYAKE Y, AMAGAI T, et al. Halogenated polycyclic aromatic hydrocarbons in soil and river sediment from E-waste recycling sites in Vietnam[J]. Journal of Water and Environment Technology, 2016, 14(3): 166-176. doi: 10.2965/jwet.15-053
[83] TUE N M, GOTO A, TAKAHASHI S, et al. Soil contamination by halogenated polycyclic aromatic hydrocarbons from open burning of e-waste in Agbogbloshie (Accra, Ghana)[J]. Journal of Material Cycles and Waste Management, 2017, 19(4): 1324-1332. doi: 10.1007/s10163-016-0568-y
[84] QIAO M, QI W X, LIU H J, et al. Occurrence, behavior and removal of typical substituted and parent polycyclic aromatic hydrocarbons in a biological wastewater treatment plant[J]. Water Research, 2014, 52: 11-19. doi: 10.1016/j.watres.2013.12.032
[85] LIU Q Z, XU X, LIN L H, et al. Occurrence, distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants[J]. Science of the Total Environment, 2021, 789: 147911. doi: 10.1016/j.scitotenv.2021.147911
[86] QIAO M, BAI Y H, CAO W, et al. Impact of secondary effluent from wastewater treatment plants on urban rivers: Polycyclic aromatic hydrocarbons and derivatives[J]. Chemosphere, 2018, 211: 185-191. doi: 10.1016/j.chemosphere.2018.07.167
[87] QIAO M, FU L J, LI Z R, et al. Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai Rivers in Northern China[J]. Environmental Pollution, 2020, 257: 113600. doi: 10.1016/j.envpol.2019.113600
[88] QIAO M, QI W X, LIU H J, et al. Oxygenated, nitrated, methyl and parent polycyclic aromatic hydrocarbons in rivers of Haihe River System, China: Occurrence, possible formation, and source and fate in a water-shortage area[J]. Science of the Total Environment, 2014, 481: 178-185. doi: 10.1016/j.scitotenv.2014.02.050
[89] KONG J J, MA T, CAO X Y, et al. Occurrence, partition behavior, source and ecological risk assessment of nitro-PAHs in the sediment and water of Taige Canal, China[J]. Journal of Environmental Sciences (China), 2023, 124: 782-793. doi: 10.1016/j.jes.2022.02.034
[90] YUAN K, QING Q, WANG Y R, et al. Characteristics of chlorinated and brominated polycyclic aromatic hydrocarbons in the Pearl River Estuary[J]. Science of the Total Environment, 2020, 739: 139774. doi: 10.1016/j.scitotenv.2020.139774
[91] MOHAMMED R, ZHANG Z F, HU Y H, et al. Temporal-spatial variation, source forensics of PAHs and their derivatives in sediment from Songhua River, Northeastern China[J]. Environmental Geochemistry and Health, 2022, 44(11): 4031-4043. doi: 10.1007/s10653-021-01106-7
[92] 曾超怡, 徐辉, 许岩, 等. 长江重点江段水体中多环芳烃及其衍生物的分布及健康风险[J]. 环境科学学报, 2021, 41(12): 4932-4941. ZENG C Y, XU H, XU Y, et al. Distribution and health risk of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in surface water of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 4932-4941 (in Chinese).
[93] BATENI F, MEHDINIA A, LUNDIN L, et al. Distribution, source and ecological risk assessment of polycyclic aromatic hydrocarbons in the sediments of northern part of the Persian Gulf[J]. Chemosphere, 2022, 295: 133859. doi: 10.1016/j.chemosphere.2022.133859
[94] FUJIWARA F, GUIÑEZ M, CERUTTI S, et al. UHPLC-(+)APCI-MS/MS determination of oxygenated and nitrated polycyclic aromatic hydrocarbons in airborne particulate matter and tree barks collected in Buenos Aires city[J]. Microchemical Journal, 2014, 116: 118-124. doi: 10.1016/j.microc.2014.04.004
[95] NI H G, GUO J Y. Parent and halogenated polycyclic aromatic hydrocarbons in seafood from South China and implications for human exposure[J]. Journal of Agricultural and Food Chemistry, 2013, 61(8): 2013-2018. doi: 10.1021/jf304836q
[96] WANG L, LI C M, JIAO B N, et al. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments[J]. Science of the Total Environment, 2018, 616/617: 288-295. doi: 10.1016/j.scitotenv.2017.10.336
[97] WICKRAMA-ARACHCHIGE A U-K, GGURUGE K S, INAGAKI Y, et al. Halogenated polycyclic aromatic hydrocarbons in edible aquatic species of two Asian countries: Congener profiles, biomagnification, and human risk assessment[J]. Food Chemistry, 2021, 360: 130072. doi: 10.1016/j.foodchem.2021.130072
[98] HUANG C, XU X, WANG D H, et al. The aryl hydrocarbon receptor (AhR) activity and DNA-damaging effects of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs)[J]. Chemosphere, 2018, 211: 640-647. doi: 10.1016/j.chemosphere.2018.07.087