[1] KALHOR K, GHASEMIZADEH R, RAJIC L, et al. Assessment of groundwater quality and remediation in karst aquifers: A review[J]. Groundwater for Sustainable Development, 2019, 8: 104-121. doi: 10.1016/j.gsd.2018.10.004
[2] LEE T H, CAO W Z, TSANG D C, et al. Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control: A field-scale study[J]. Science of the Total Environment, 2019, 666: 839-848. doi: 10.1016/j.scitotenv.2019.02.160
[3] KHPALWAK W, JADOON W A, ABDEL-DAYEM S M, et al. Polycyclic aromatic hydrocarbons in urban road dust, Afghanistan: Implications for human health[J]. Chemosphere, 2019, 218: 517-526. doi: 10.1016/j.chemosphere.2018.11.087
[4] LV H, WANG Y, WANG H. Determination of major pollutant and biogeochemical processes in an oil-contaminated aquifer using human health risk assessment and multivariate statistical analysis[J]. Human and Ecological Risk Assessment: An International Journal, 2019, 25(3): 505-526. doi: 10.1080/10807039.2018.1449099
[5] SUTTON N B, KALISZ M, KRUPANEK J, et al. Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site[J]. Environmental Science & Technology, 2014, 48(4): 2352-2360.
[6] WEI K, MA J, XI B, et al. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater[J]. Journal of Hazardous Materials, 2022, 432: 128738. doi: 10.1016/j.jhazmat.2022.128738
[7] 韦俊宏, 蒋亚萍, 陈余道, 等. 过硫酸盐氧化去除地下水中乙醇的研究[J]. 环境污染与防治, 2020, 42(8): 953-958.
[8] MA Y, FENG Y, FENG Y, et al. Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations[J]. Water Research, 2020, 171: 115385. doi: 10.1016/j.watres.2019.115385
[9] WANG W, JIA J, ZHANG B, et al. A review of slow-release materials for remediation of organically contaminated groundwater-material preparation, applications and prospects for practical application[J]. Journal of Hazardous Materials Advances, 2024, 13: 100393. doi: 10.1016/j.hazadv.2023.100393
[10] EVANS P J, DUGAN P, NGUYEN D, et al. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1, 4-dioxane and chlorinated solvents[J]. Chemosphere, 2019, 221: 802-811. doi: 10.1016/j.chemosphere.2019.01.075
[11] DAI Z, LI D, AO Z, et al. Theoretical exploration of VOCs removal mechanism by carbon nanotubes through persulfate-based advanced oxidation processes: Adsorption and catalytic oxidation[J]. Journal of Hazardous Materials, 2021, 405: 124684. doi: 10.1016/j.jhazmat.2020.124684
[12] HONETSCHLÄGEROVÁ L, MARTINEC M, ŠKAROHLÍD R. Coupling in situ chemical oxidation with bioremediation of chloroethenes: a review[J]. Reviews in Environmental Science and Bio/Technology, 2019, 18: 699-714. doi: 10.1007/s11157-019-09512-1
[13] YU B, YUAN Z, YU Z, et al. BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques[J]. Chemical Engineering Journal, 2022, 435: 134825. doi: 10.1016/j.cej.2022.134825
[14] TAN B, HE Z, FANG Y, et al. Removal of organic pollutants in shale gas fracturing flowback and produced water: A review[J]. Science of the Total Environment, 2023, 883: 163478. doi: 10.1016/j.scitotenv.2023.163478
[15] ZHU B, FRIEDRICH S, WANG Z, et al. Availability of nitrite and nitrate as electron acceptors modulates anaerobic toluene-degrading communities in aquifer sediments[J]. Frontiers in Microbiology, 2020, 11: 559985.
[16] ZHAO Y, QU D, HOU Z, et al. Enhanced natural attenuation of BTEX in the nitrate-reducing environment by different electron acceptors[J]. Environmental Technology, 2015, 36(5): 615-621. doi: 10.1080/09593330.2014.954006
[17] CORSEUIL H X, GOMEZ D E, SCHAMBECK C M, et al. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation[J]. Journal of Contaminant Hydrology, 2015, 174: 1-9. doi: 10.1016/j.jconhyd.2014.12.004
[18] CHANG Y, PENG Y, CHEN K, et al. The effect of different in situ chemical oxidation (ISCO) technologies on the survival of indigenous microbes and the remediation of petroleum hydrocarbon-contaminated soil[J]. Process Safety and Environmental Protection, 2022, 163: 105-115. doi: 10.1016/j.psep.2022.05.019
[19] KOLHATKAR R, SCHNOBRICH M. Land application of sulfate salts for enhanced natural attenuation of benzene in groundwater: A case study[J]. Groundwater Monitoring & Remediation, 2017, 37(2): 43-57.
[20] WARTELL B, BOUFADEL M, RODRIGUEZ-FREIRE L. An effort to understand and improve the anaerobic biodegradation of petroleum hydrocarbons: A literature review[J]. International Biodeterioration & Biodegradation, 2021, 157: 105156.
[21] RAJBONGSHI A, GOGOI S B. A review on anaerobic microorganisms isolated from oil reservoirs[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 111. doi: 10.1007/s11274-021-03080-9
[22] 梁美娜, 陈余道, 张燕, 等. 气相色谱法测定地下水的乙醇和单环芳香烃[J]. 环境科学与技术, 2009, 32(11): 130-132. doi: 10.3969/j.issn.1003-6504.2009.11.030
[23] LIANG C, HUANG C, CHEN Y. Potential for activated persulfate degradation of BTEX contamination[J]. Water Research, 2008, 42(15): 4091-4100. doi: 10.1016/j.watres.2008.06.022
[24] 吕长青, 母玉凤. 水样中亚铁及总铁含量连续测定方法探讨[J]. 油气田环境保护, 2013, 23(1): 50-52. doi: 10.3969/j.issn.1005-3158.2013.01.016
[25] 朱雪强, 花港, 周来, 等. “蜡烛”型过硫酸盐缓释材料释放行为与机制[J]. 中国环境科学, 2023, 43(2): 601-609. doi: 10.3969/j.issn.1000-6923.2023.02.012
[26] WANG H, CHEN Y, MENG W, et al. Preferential removal of benzene, toluene, ethylbenzene, and xylene (BTEX) by persulfate in ethanol-containing aquifer materials[J]. Environmental Science and Pollution Research, 2022, 29(12): 17617-17625. doi: 10.1007/s11356-021-16926-4
[27] 郑杲, 蒋亚萍, 陈余道, 等. 过硫酸盐去除石灰土介质中汽油BTEX的效果及乙醇的影响[J]. 环境科学学报, 2022, 42(7): 217-224.
[28] 孟伟, 蒋亚萍, 陈余道, 等. 几种含水介质中过硫酸钠去除苯系物/乙醇的效果和影响[J]. 环境化学, 2019, 38(10): 2187-2194. doi: 10.7524/j.issn.0254-6108.2018112804
[29] KAKOSOVÁ E, HRABÁK P, ČERNÍK M, et al. Effect of various chemical oxidation agents on soil microbial communities[J]. Chemical Engineering Journal, 2017, 314: 257-265. doi: 10.1016/j.cej.2016.12.065
[30] DIELS L, Van ROY S, TAGHAVI S, et al. From industrial sites to environmental applications with Cupriavidus metallidurans[J]. Antonie van Leeuwenhoek, 2009, 96: 247-258. doi: 10.1007/s10482-009-9361-4
[31] WAIGI M G, KANG F, GOIKAVI C, et al. Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: A review[J]. International Biodeterioration & Biodegradation, 2015, 104: 333-349.
[32] WANG M, WANG L, SHI H, et al. Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress[J]. Environmental Research, 2021, 201: 111599. doi: 10.1016/j.envres.2021.111599
[33] PII Y, MARASTONI L, SPRINGETH C, et al. Modulation of Fe acquisition process by Azospirillum brasilense in cucumber plants[J]. Environmental and Experimental Botany, 2016, 130: 216-225. doi: 10.1016/j.envexpbot.2016.06.011
[34] RAWAT D, SHARMA U, PORIA P, et al. Iron-dependent mutualism between Chlorella sorokiniana and Ralstonia pickettii forms the basis for a sustainable bioremediation system[J]. ISME communications, 2022, 2(1): 83. doi: 10.1038/s43705-022-00161-0