[1] YU M, WEINTHAL E, PATINO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan basin, China[J]. Environmental Science & Technology, 2016, 50(6): 2837-2845.
[2] FABER A-H, ANNEVELINK M P J A, SCHOT P P, et al. Chemical and bioassay assessment of waters related to hydraulic fracturing at a tight gas production site[J]. Science of the Total Environment, 2019, 690: 636-646. doi: 10.1016/j.scitotenv.2019.06.354
[3] ZHONG C, ZOLFAGHARI A, HOU D, et al. Comparison of the hydraulic fracturing water cycle in China and North America: a critical review[J]. Environmental Science & Technology, 2021, 55(11): 7167-7185.
[4] DIGIULIO D C, JACKSON R B. Response to comment on "Impact to underground sources of drinking water and domestic wells from production well stimulation and completion practices in the Pavillion, Wyoming field"[J]. Environmental Science & Technology, 2016, 50(19): 10771-10772.
[5] PATEL A B, SHAIKH S, JAIN K R, et al. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches[J]. Frontiers in Microbiology, 2020, 11: 562813. doi: 10.3389/fmicb.2020.562813
[6] OREM W, TATU C, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale[J]. International Journal of Coal Geology, 2014, 126: 20-31. doi: 10.1016/j.coal.2014.01.003
[7] LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment[J]. Science of the Total Environment, 2015, 512: 637-644.
[8] FOLKERTS E J, BLEWETT T A, DELOMPRE P, et al. Toxicity in aquatic model species exposed to a temporal series of three different flowback and produced water samples collected from a horizontal hydraulically fractured well[J]. Ecotoxicology and Environmental Safety, 2019, 180: 600-609. doi: 10.1016/j.ecoenv.2019.05.054
[9] HE Y, FLYNN S L, FOLKERTS E J, et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water[J]. Water Research, 2017, 114: 78-87. doi: 10.1016/j.watres.2017.02.027
[10] 王丹, 陈龙利, 何敏, 等. 页岩气采出水水质特性分析[J]. 环境监测管理与技术, 2018, 30(6): 50-53. doi: 10.3969/j.issn.1006-2009.2018.06.012
[11] CHEN B, HUANG J, YUAN K, et al. Direct evidences on bacterial growth pattern regulating pyrene degradation pathway and genotypic dioxygenase expression[J]. Marine Pollution Bulletin, 2016, 105(1): 73-80. doi: 10.1016/j.marpolbul.2016.02.054
[12] GUPTA G, KUMAR V, PAL A K. Biodegradation of polycyclic aromatic hydrocarbons by microbial consortium: A distinctive approach for decontamination of soil[J]. Soil & Sediment Contamination, 2016, 25(6): 597-623.
[13] DHAR K, SUBASHCHANDRABOSE S R, VENKATESWARLU K, et al. Anaerobic microbial degradation of polycyclic aromatic hydrocarbons: A comprehensive review[J]. Reviews of Environmental Contamination and Toxicology, 2020, 251: 25-108.
[14] ESTELMANN S, BLANK I, FELDMANN A, et al. Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation[J]. Molecular Microbiology, 2015, 95(2): 162-172. doi: 10.1111/mmi.12875
[15] CAMPO R, DI BELLA G. Petrochemical slop wastewater treatment by means of aerobic granular sludge: effect of granulation process on bio-adsorption and hydrocarbons removal[J]. Chemical Engineering Journal, 2019, 378: 122083. doi: 10.1016/j.cej.2019.122083
[16] CORSINO S F, CAMPO R, DI BELLA G, et al. Aerobic granular sludge treating shipboard slop: Analysis of total petroleum hydrocarbons loading rates on performances and stability[J]. Process Biochemistry, 2018, 65: 164-171. doi: 10.1016/j.procbio.2017.11.005
[17] DUAN F A, WANG J, ISMAIL S, et al. Hydroxypropyl-beta-cyclodextrin improves the removal of polycyclic aromatic hydrocarbons by aerobic granular sludge[J]. Environmental Technology, 2022, 43(21): 3262-3268. doi: 10.1080/09593330.2021.1921045
[18] YAN L, CHEN W, WANG C, et al. Tetracycline removal in granulation: Influence of extracellular polymers substances, structure, and metabolic function of microbial community[J]. Chemosphere, 2022, 288: 132510. doi: 10.1016/j.chemosphere.2021.132510
[19] 卢培利, 邱哲, 张代钧, 等. 页岩气开采返排废水有机污染物研究进展与展望[J]. 化工进展, 2018, 37(3): 1161-1166.
[20] ZHANG X, CHEN A, ZHANG D, et al. The treatment of flowback water in a sequencing batch reactor with aerobic granular sludge: Performance and microbial community structure[J]. Chemosphere, 2018, 211: 1065-1072. doi: 10.1016/j.chemosphere.2018.08.022
[21] 陈翱翔. 好氧颗粒污泥SBR处理页岩气开采水力压裂返排废水的研究[D]. 重庆; 重庆大学, 2017.
[22] 中华人民共和国生态环境部, 中国国家标准化管理委员会. 水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法: HJ 478—2009[S]. 北京: 中国环境科学出版社, 2009.
[23] LIU J J, WANG X C, FAN B. Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment[J]. Bioresource Technology, 2011, 102(9): 5305-5311. doi: 10.1016/j.biortech.2010.12.063
[24] FERNáNDEZ-LóPEZ C, POSADA-BAQUERO R, GARCíA J L, et al. Root-mediated bacterial accessibility and cometabolism of pyrene in soil[J]. Science of the Total Environment, 2021, 760: 143408. doi: 10.1016/j.scitotenv.2020.143408
[25] FERREIRA V R A, AMORIM C L, CRAVO S M, et al. Fluoroquinolones biosorption onto microbial biomass: activated sludge and aerobic granular sludge[J]. International Biodeterioration & Biodegradation, 2016, 110: 53-60.
[26] ZHU L, LV M L, DAI X, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107: 46-54. doi: 10.1016/j.biortech.2011.12.008
[27] CHEUNG W H, SZETO Y S, MCKAY G. Intraparticle diffusion processes during acid dye adsorption onto chitosan[J]. Bioresource Technology, 2007, 98(15): 2897-2904. doi: 10.1016/j.biortech.2006.09.045
[28] ZHAO X, WANG H, ZHANG G Z, et al. Characteristics of Cu(II)-modified aerobic granular sludge biocarbon in removal of doxycycline hydroxide[J]. Environmental Science and Pollution Research, 2022, 29(10): 14019-14035. doi: 10.1007/s11356-021-16547-x
[29] REDóN L, SUBIRATS X, CHAPEL S, et al. Comprehensive analysis of the effective and intra-particle diffusion of weakly retained compounds in silica hydrophilic interaction liquid chromatography columns[J]. Journal of Chromatography A, 2024, 1713: 464529. doi: 10.1016/j.chroma.2023.464529
[30] DEBNATH S, DAS R. Strong adsorption of CV dye by Ni ferrite nanoparticles for waste water purification: Fits well the pseudo second order kinetic and Freundlich isotherm model[J]. Ceramics International, 2023, 49(10): 16199-16215. doi: 10.1016/j.ceramint.2023.01.218
[31] CHU T P, NGUYEN N T, VU T L, et al. Synthesis, characterization, and modification of alumina nanoparticles for cationic dye removal[J], Soil and Sediment Contamination: An International Journal, 2019, 12(3): 450-465.
[32] CHEN Y, MA R, PU X, et al. The characterization of a novel magnetic biochar derived from sulfate-reducing sludge and its application for aqueous Cr(VI) removal through synergistic effects of adsorption and chemical reduction[J]. Chemosphere, 2022, 308: 136258. doi: 10.1016/j.chemosphere.2022.136258
[33] ZHENG L, TIAN Y, DING A-Z, et al. Adsorption of Cd(II), Zn(II) by extracellular polymeric substances extracted from waste activated sludge[J]. Water Science & Technology, 2008, 58(1): 195-200.
[34] ADT I, TOUBAS D, PINON J-M, et al. FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans[J]. Archives of Microbiology, 2006, 185(4): 277-285. doi: 10.1007/s00203-006-0094-8
[35] ZHANG Y, HU Q, FU J, et al. Influence of exposure pathways on tissue distribution and health impact of polycyclic aromatic hydrocarbon derivatives[J]. Environment & Health, 2023, 1(3): 150-167.
[36] IMAM A, SUMAN S K, KANAUJIA P K, et al. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review[J]. Bioresource Technology, 2022, 343: 126121. doi: 10.1016/j.biortech.2021.126121
[37] 杜飞, 耿旺, 常美荣, 等. 新工艺法合成2, 2′-亚甲基双(4, 6-二叔丁基苯酚)[J]. 精细石油化工, 2010, 27(3): 30-33. doi: 10.3969/j.issn.1003-9384.2010.03.009
[38] 马翠, 刘亚琦, 何争光, 等. 臭氧催化氧化降解2, 2′-亚甲基-双(4-甲基-6-叔丁基苯酚)效能及机制研究[J]. 安全与环境学报, 2022, 22(2): 1045-1051.
[39] MA C, JIA S, YUAN P, et al. Catalytic ozonation of 2, 2′-methylenebis (4-methyl-6-tert-butylphenol) over nano-Fe3O4@cow dung ash composites: Optimization, toxicity, and degradation mechanisms[J]. Environmental Pollution, 2020, 265.
[40] HE Q, WANG H, CHEN L, et al. Elevated salinity deteriorated enhanced biological phosphorus removal in an aerobic granular sludge sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal[J]. Journal of Hazardous Materials, 2020, 390: 114597.
[41] 王磊, 齐涛, 江洋, 等. 一种合成三[2, 4-二叔丁基苯基]亚磷酸酯的方法: CN202010489413.6[P]. 2020-06-02.