[1] |
ZHAO H, HUANG C-H, ZHONG C, et al. Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions[J]. Frontiers of Environmental Science & Engineering, 2022, 16: 1-11.
|
[2] |
RICHARDSON S D, TERNES T A. Water analysis: Emerging contaminants and current issues[J]. Analytical Chemistry, 2022, 94(1): 382-416. doi: 10.1021/acs.analchem.1c04640
|
[3] |
LOU J, LU H, WANG W, et al. Molecular composition of halobenzoquinone precursors in natural organic matter in source water[J]. Water Research, 2022, 209: 117901. doi: 10.1016/j.watres.2021.117901
|
[4] |
ZHAO Y L, QIN F, BOYD J M, et al. Characterization and determination of chloro- and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water[J]. Analytical Chemistry, 2010, 82(11): 4599-4605. doi: 10.1021/ac100708u
|
[5] |
QIN F, ZHAO Y Y, ZHAO Y L, et al. A toxic disinfection by-product, 2, 6-dichloro-1, 4-benzoquinone, identified in drinking water[J]. Angewandte Chemie (International Ed. in English), 2010, 49(4): 790-792. doi: 10.1002/anie.200904934
|
[6] |
WANG W, QIAN Y C, BOYD J M, et al. Halobenzoquinones in swimming pool waters and their formation from personal care products[J]. Environmental Science & Technology, 2013, 47(7): 3275-3282.
|
[7] |
JEONG C H, WAGNER E D, SIEBERT V R, et al. Occurrence and toxicity of disinfection byproducts in European drinking waters in relation with the HIWATE epidemiology study[J]. Environmental Science & Technology, 2012, 46(21): 12120-12128.
|
[8] |
HUANG R F, WANG W, QIAN Y C, et al. Ultra pressure liquid chromatography-negative electrospray ionization mass spectrometry determination of twelve halobenzoquinones at ng/L levels in drinking water[J]. Analytical Chemistry, 2013, 85(9): 4520-4529. doi: 10.1021/ac400160r
|
[9] |
HU S Y, GONG T T, ZHU H T, et al. Formation and decomposition of new iodinated halobenzoquinones during chloramination in drinking water[J]. Environmental Science & Technology, 2020, 54(8): 5237-5248.
|
[10] |
HU S Y, CHEN X, ZHANG B B, et al. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1, 4-benzoquinone in chlorinated drinking water[J]. Journal of Hazardous Materials, 2022, 436: 129189. doi: 10.1016/j.jhazmat.2022.129189
|
[11] |
HU S, LI X, HE F, et al. Cytotoxicity of emerging halophenylacetamide disinfection byproducts in drinking water: Mechanism and prediction[J]. Water Research, 2024, 256: 121562. doi: 10.1016/j.watres.2024.121562
|
[12] |
LI J H, MOE B, VEMULA S, et al. Emerging disinfection byproducts, halobenzoquinones: Effects of isomeric structure and halogen substitution on cytotoxicity, formation of reactive oxygen species, and genotoxicity[J]. Environmental Science & Technology, 2016, 50(13): 6744-6752.
|
[13] |
BROOKS T, ROBERTSON W. Safe drinking water, lessons from recent outbreaks in affluent nations[J]. Canadian Journal of Public Health, 2005, 96(1): 23. doi: 10.1007/BF03404008
|
[14] |
ZHAO Y L, ANICHINA J, LU X F, et al. Occurrence and formation of chloro- and bromo-benzoquinones during drinking water disinfection[J]. Water Research, 2012, 46(14): 4351-4360. doi: 10.1016/j.watres.2012.05.032
|
[15] |
NAMAZIAN M, COOTE M L. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile[J]. The Journal of Physical Chemistry. A, 2007, 111(30): 7227-7232. doi: 10.1021/jp0725883
|
[16] |
WANG W, MOE B, LI J H, et al. Analytical characterization, occurrence, transformation, and removal of the emerging disinfection byproducts halobenzoquinones in water[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 97-110. doi: 10.1016/j.trac.2016.03.004
|
[17] |
EL-NAJJAR N, GALI-MUHTASIB H, KETOLA R A, et al. The chemical and biological activities of quinones: overview and implications in analytical detection[J]. Phytochemistry Reviews, 2011, 10(3): 353-370. doi: 10.1007/s11101-011-9209-1
|
[18] |
ZHAO J X, HU S Y, ZHU L Z, et al. Formation of chlorinated halobenzoquinones during chlorination of free aromatic amino acids[J]. The Science of the Total Environment, 2022, 825: 153904. doi: 10.1016/j.scitotenv.2022.153904
|
[19] |
FAN Y, SUN G, KAW H Y, et al. Analytical characterization of nucleotides and their concentration variation in drinking water treatment process[J]. Science of The Total Environment, 2022, 817: 152510. doi: 10.1016/j.scitotenv.2021.152510
|
[20] |
GE F, XIAO Y, YANG Y X, et al. Formation of water disinfection byproduct 2, 6-dichloro-1, 4-benzoquinone from chlorination of green algae[J]. Journal of Environmental Sciences (China), 2018, 63: 1-8. doi: 10.1016/j.jes.2017.10.001
|
[21] |
HRUDEY S E. Chlorination disinfection by-products, public health risk tradeoffs and me[J]. Water Research, 2009, 43(8): 2057-2092. doi: 10.1016/j.watres.2009.02.011
|
[22] |
VILLANUEVA C M, CANTOR K P, GRIMALT J O, et al. Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools[J]. American Journal of Epidemiology, 2007, 165(2): 148-156.
|
[23] |
Diemert S, Wang W, Andrews R C, et al. Removal of halo-benzoquinone (emerging disinfection by-product) precursor material from three surface waters using coagulation[J]. Water Research, 2013, 47(5): 1773-1782. doi: 10.1016/j.watres.2012.12.035
|
[24] |
NAKAI T, KOSAKA K, ASAMI M, et al. Analysis and occurrence of 2, 6-dichloro-1, 4-benzoquinone in drinking water by liquid chromatography-tandem mass spectrometry[J]. Journal of Japan Society on Water Environment, 2015, 38(3): 67-73. doi: 10.2965/jswe.38.67
|
[25] |
LI Y N, ZHANG L F, YANG L M, et al. Hydrolysis characteristics and risk assessment of a widely detected emerging drinking water disinfection-by-product-2, 6-dichloro-1, 4-benzoquinone-in the water environment of Tianjin (China)[J]. The Science of the Total Environment, 2021, 765: 144394. doi: 10.1016/j.scitotenv.2020.144394
|
[26] |
WU Y, WEI W, LUO J, et al. Comparative toxicity analyses from different endpoints: are new cyclic disinfection byproducts (DBPs) more toxic than common aliphatic DBPs?[J]. Environmental Science & Technology, 2021, 56(1): 194-207.
|
[27] |
LOU J X, WANG W, ZHU L Z. Occurrence, formation, and oxidative stress of emerging disinfection byproducts, halobenzoquinones, in tea[J]. Environmental Science & Technology, 2019, 53(20): 11860-11868.
|
[28] |
LaKIND J S, RICHARDSON S D, BLOUNT B C. The good, the bad, and the volatile: Can we have both healthy pools and healthy people?[J]. Environmental Science & Technology, 2010, 44(9): 3205-3210.
|
[29] |
BOYD J M, HUANG L, XIE L, et al. A cell-microelectronic sensing technique for profiling cytotoxicity of chemicals[J]. Analytica Chimica Acta, 2008, 615(1): 80-87. doi: 10.1016/j.aca.2008.03.047
|
[30] |
DU H Y, LI J H, MOE B, et al. Cytotoxicity and oxidative damage induced by halobenzoquinones to T24 bladder cancer cells[J]. Environmental Science & Technology, 2013, 47(6): 2823-2830.
|
[31] |
O’BRIEN P J. Molecular mechanisms of quinone cytotoxicity[J]. Chemico-Biological Interactions, 1991, 80(1): 1-41. doi: 10.1016/0009-2797(91)90029-7
|
[32] |
SONG Y, WAGNER B A, WITMER J R, et al. Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(24): 9725-9730.
|
[33] |
ZHOU M, LI J, DU M, et al. Methoxylated Modification of Glutathione-Mediated Metabolism of Halobenzoquinones In Vivo and In Vitro[J]. Environmental Science & Technology, 2023, 57(9): 3581-3589.
|
[34] |
WANG W, QIAN Y C, LI J H, et al. Characterization of mechanisms of glutathione conjugation with halobenzoquinones in solution and HepG2 cells[J]. Environmental Science & Technology, 2018, 52(5): 2898-2908.
|
[35] |
LI J H, WANG W, ZHANG H Q, et al. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells[J]. Toxicological Sciences: an Official Journal of the Society of Toxicology, 2014, 141(2): 335-343. doi: 10.1093/toxsci/kfu088
|
[36] |
LI J H, MOE B, LIU Y M, et al. Halobenzoquinone-induced alteration of gene expression associated with oxidative stress signaling pathways[J]. Environmental Science & Technology, 2018, 52(11): 6576-6584.
|
[37] |
WANG C, YANG X, ZHENG Q, et al. Halobenzoquinone-induced developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos[J]. Environmental Science & Technology, 2018, 52(18): 10590-10598.
|
[38] |
WAIDYANATHA S, LIN P H, RAPPAPORT S M. Characterization of chlorinated adducts of hemoglobin and albumin following administration of pentachlorophenol to rats[J]. Chemical Research in Toxicology, 1996, 9(3): 647-653. doi: 10.1021/tx950172n
|
[39] |
WANG J, YU S Y, JIAO S H, et al. Characterization of TCHQ-induced genotoxicity and mutagenesis using the pSP189 shuttle vector in mammalian cells[J]. Mutation Research, 2012, 729(1/2): 16-23.
|
[40] |
ZHANG X, LIU L, WANG J, et al. The alternation of halobenzoquinone disinfection byproduct on toxicogenomics of DNA damage and repair in uroepithelial cells[J]. Environment International, 2024, 183: 108407. doi: 10.1016/j.envint.2023.108407
|
[41] |
NGUYEN T N T, BERTAGNOLLI A D, VILLALTA P W, et al. Characterization of a deoxyguanosine adduct of tetrachlorobenzoquinone: Dichlorobenzoquinone-1, N2-etheno-2'-deoxyguanosine[J]. Chemical Research in Toxicology, 2005, 18(11): 1770-1776. doi: 10.1021/tx050204z
|
[42] |
XIONG Y, KAW H Y, ZHU L, et al. Genotoxicity of quinone: an insight on DNA adducts and its LC-MS-based detection[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(23): 4217-40. doi: 10.1080/10643389.2021.2001276
|
[43] |
GASKELL M, McLUCKIE K I E, FARMER P B. Comparison of the repair of DNA damage induced by the benzene metabolites hydroquinone and p-benzoquinone: A role for hydroquinone in benzene genotoxicity[J]. Carcinogenesis, 2005, 26(3): 673-680.
|
[44] |
WAGNER E D, PLEWA M J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review[J]. Journal of Environmental Sciences (China), 2017, 58: 64-76. doi: 10.1016/j.jes.2017.04.021
|
[45] |
BROOKS C L, GU W. p53 ubiquitination: Mdm2 and beyond[J]. Molecular Cell, 2006, 21(3): 307-315. doi: 10.1016/j.molcel.2006.01.020
|
[46] |
DONG H, SU C Y, XIA X M, et al. Polychlorinated biphenyl quinone-induced genotoxicity, oxidative DNA damage and γ-H2AX formation in HepG2 cells[J]. Chemico-Biological Interactions, 2014, 212: 47-55. doi: 10.1016/j.cbi.2014.01.016
|
[47] |
NAKAMURA J, LA D K, SWENBERG J A. 5'-nicked apurinic/apyrimidinic sites are resistant to beta-elimination by beta-polymerase and are persistent in human cultured cells after oxidative stress[J]. The Journal of Biological Chemistry, 2000, 275(8): 5323-5328. doi: 10.1074/jbc.275.8.5323
|
[48] |
FENECH M. The in vitro micronucleus technique[J]. Mutation Research, 2000, 455(1-2): 81-95. doi: 10.1016/S0027-5107(00)00065-8
|
[49] |
RANGEL-LÓPEZ A, PANIAGUA-MEDINA M E, URBÁN-REYES M, et al. Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: A comparative study[J]. Mutagenesis, 2013, 28(2): 219-225. doi: 10.1093/mutage/ges075
|
[50] |
LI J B, ZHANG H F, HAN Y N, et al. Cytotoxicity and genotoxicity assays of halobenzoquinones disinfection byproducts using different human cell lines[J]. Environmental and Molecular Mutagenesis, 2020, 61(5): 526-533. doi: 10.1002/em.22369
|
[51] |
HOTCHKISS R D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography[J]. The Journal of Biological Chemistry, 1948, 175(1): 315-332. doi: 10.1016/S0021-9258(18)57261-6
|
[52] |
XU G L, BOCHTLER M. Reversal of nucleobase methylation by dioxygenases[J]. Nature Chemical Biology, 2020, 16: 1160-1169. doi: 10.1038/s41589-020-00675-5
|
[53] |
TAHILIANI M, KOH K P, SHEN Y H, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935. doi: 10.1126/science.1170116
|
[54] |
BRANCO M R, FICZ G, REIK W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome[J]. Nature Reviews Genetics, 2012, 13: 7-13.
|
[55] |
WU H, ZHANG Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation[J]. Genes & Development, 2011, 25(23): 2436-2452.
|
[56] |
FANG T, TANG C, YIN J, et al. Magnetic multi-enzyme cascade combined with liquid chromatography tandem mass spectrometry for fast DNA digestion and quantitative analysis of 5-hydroxymethylcytosine in genome of human bladder cancer T24 cells induced by tetrachlorobenzoquinone[J]. Journal of Chromatography A, 2022, 1676: 463279. doi: 10.1016/j.chroma.2022.463279
|
[57] |
LI C P, WANG F B, WANG H L. Tetrachloro-1, 4-benzoquinone induces apoptosis of mouse embryonic stem cells[J]. Journal of Environmental Sciences (China), 2017, 51: 5-12. doi: 10.1016/j.jes.2016.04.026
|
[58] |
ZHAO B L, YANG Y, WANG X L, et al. Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism[J]. Nucleic Acids Research, 2014, 42(3): 1593-1605. doi: 10.1093/nar/gkt1090
|
[59] |
FEINBERG A P, VOGELSTEIN B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts[J]. Nature, 1983, 301: 89-92. doi: 10.1038/301089a0
|
[60] |
ZHOU H, CHEN W D, QIN X, et al. MMTV promoter hypomethylation is linked to spontaneous and MNU associated c-neu expression and mammary carcinogenesis in MMTV c-neu transgenic mice[J]. Oncogene, 2001, 20(42): 6009-6017. doi: 10.1038/sj.onc.1204830
|
[61] |
CHEN Y Y, WANG J M, YU Z Q, et al. Transcriptomic and metabolomic analyses revealed epiboly delayed mechanisms of 2, 5-dichloro-1, 4-benuinone on zebrafish embryos[J]. Environmental Science and Pollution Research, 2023, 30(27): 71360-71370. doi: 10.1007/s11356-023-27145-4
|
[62] |
LI J, LIANG Y, ZHANG X, et al. Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris(2, 3-dibromopropyl) isocyanurate[J]. Environmental Science & Technology, 2011, 45(22): 9750-9757.
|
[63] |
SONG W Y, WU K, WU X L, et al. The antiestrogen-like activity and reproductive toxicity of 2, 6-DCBQ on female zebrafish upon sub-chronic exposure[J]. Journal of Environmental Sciences (China), 2022, 117: 10-20. doi: 10.1016/j.jes.2021.11.012
|
[64] |
DENG Y-L, LUO Q, LIU C, et al. Urinary biomarkers of exposure to drinking water disinfection byproducts and ovarian reserve: a cross-sectional study in China[J]. Journal of hazardous materials, 2022, 421: 126683. doi: 10.1016/j.jhazmat.2021.126683
|
[65] |
WRIGHT J M, EVANS A, KAUFMAN J A, et al. Disinfection by-product exposures and the risk of specific cardiac birth defects[J]. Environmental Health Perspectives, 2017, 125(2): 269-277. doi: 10.1289/EHP103
|
[66] |
YANG X, WANG C, ZHENG Q, et al. Emerging disinfection byproduct 2, 6-dichlorobenzoquinone-induced cardiovascular developmental toxicity of embryonic zebrafish and larvae: Imaging and transcriptome analysis[J]. ACS Omega, 2022, 7(49): 45642-45653. doi: 10.1021/acsomega.2c06296
|
[67] |
FU K Z, LI J H, VEMULA S, et al. Effects of halobenzoquinone and haloacetic acid water disinfection byproducts on human neural stem cells[J]. Journal of Environmental Sciences (China), 2017, 58: 239-249. doi: 10.1016/j.jes.2017.02.006
|
[68] |
LIU Z, LV X, YANG B, et al. Tetrachlorobenzoquinone exposure triggers ferroptosis contributing to its neurotoxicity[J]. Chemosphere, 2021, 264: 128413. doi: 10.1016/j.chemosphere.2020.128413
|
[69] |
KINKHABWALA A, RILEY M, KOYAMA M, et al. A structural and functional ground plan for neurons in the hindbrain of zebrafish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 1164-1169.
|
[70] |
PORTUGUES R, ENGERT F. The neural basis of visual behaviors in the larval zebrafish[J]. Current Opinion in Neurobiology, 2009, 19(6): 644-647. doi: 10.1016/j.conb.2009.10.007
|
[71] |
GRAW J. From eyeless to neurological diseases[J]. Experimental Eye Research, 2017, 156: 5-9. doi: 10.1016/j.exer.2015.11.006
|
[72] |
CHEN W, WANG X, WAN S, et al. Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals[J]. Journal of Hazardous Materials, 2024, 466: 133035. doi: 10.1016/j.jhazmat.2023.133035
|