[1] |
DOUDRICK K, YANG T, HRISTOVSKI K, et al. Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity[J]. Applied Catalysis B: Environmental, 2013, 136/137: 40-47. doi: 10.1016/j.apcatb.2013.01.042
|
[2] |
王开然, 陈华伟, 吴振, 等. 济南泉域岩溶水系统硝酸盐空间分布及溯源解析[J]. 环境化学, 2024, 43(3): 961-973. doi: 10.7524/j.issn.0254-6108.2022080903
WANG K R, CHEN H W, WU Z, et al. Spatial distribution and traceability analysis of nitrate in Karst water system in Jinan spring basin[J]. Environmental Chemistry, 2024, 43(3): 961-973 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022080903
|
[3] |
田寒梅, 盛欣, 王冰, 等. 2014—2019年某市农村地区自备井水中硝酸盐含量及影响因素分析[J]. 环境卫生学杂志, 2021, 11(5): 415-419.
TIAN H M, SHENG X, WANG B, et al. Content of nitrates and its influencing factors in well water in rural areas of a city, 2014—2019[J]. Journal of Environmental Hygiene, 2021, 11(5): 415-419 (in Chinese).
|
[4] |
MAHESHWARI R K, CHAUHAN A K, LAL B, et al. Nitrate toxicity in groundwater: Its clinical manifestations, preventive measures and mitigation strategies[J]. Octa Journal of Environmental Research, 2013, 1(3): 217-230.
|
[5] |
陈西亮, 刘国, 高阳阳, 等. 零价纳米铁炭微电解体系去除水中硝酸盐[J]. 环境化学, 2016, 35(8): 1670-1675. doi: 10.7524/j.issn.0254-6108.2016.08.2015123003
CHEN X L, LIU G, GAO Y Y, et al. Removal of nitrate from water by nano-zero-valent iron-carbon microelectrolysis system[J]. Environmental Chemistry, 2016, 35(8): 1670-1675 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.08.2015123003
|
[6] |
郭睿, 秦侠, 郭城睿, 等. Ni foam/Cu电极电催化还原硝酸盐氮[J]. 环境化学, 2022, 41(6): 2103-2111. doi: 10.7524/j.issn.0254-6108.2021022601
GUO R, QIN X, GUO C R, et al. Electrocatalytic reduction of nitrate nitrogen by Ni foam/Cu electrode[J]. Environmental Chemistry, 2022, 41(6): 2103-2111 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022601
|
[7] |
REZVANI F, SARRAFZADEH M H, EBRAHIMI S, et al. Nitrate removal from drinking water with a focus on biological methods: A review[J]. Environmental Science and Pollution Research, 2019, 26(2): 1124-1141. doi: 10.1007/s11356-017-9185-0
|
[8] |
ALOWITZ M J, SCHERER M M. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal[J]. Environmental Science & Technology, 2002, 36(3): 299-306.
|
[9] |
TUGAOEN H O, GARCIA-SEGURA S, HRISTOVSKI K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology[J]. The Science of the Total Environment, 2017, 599/600: 1524-1551. doi: 10.1016/j.scitotenv.2017.04.238
|
[10] |
CHEN G D, HANUKOVICH S, CHEBEIR M, et al. Nitrate removal via a formate radical-induced photochemical process[J]. Environmental Science & Technology, 2019, 53(1): 316-324.
|
[11] |
SHI Z Y, WANG F L, XIAO Q, et al. Selective and efficient reduction of nitrate to gaseous nitrogen from drinking water source by UV/oxalic acid/ferric iron systems: Effectiveness and mechanisms[J]. Catalysts, 2022, 12(3): 348. doi: 10.3390/catal12030348
|
[12] |
KUDO A, DOMEN K, MARUYA K I, et al. Photocatalytic reduction of NO3− to form NH3 over Pt–TiO2[J]. Chemistry Letters, 1987, 16(6): 1019-1022. doi: 10.1246/cl.1987.1019
|
[13] |
BEMS B, JENTOFT F C, SCHLÖGL R. Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids[J]. Applied Catalysis B: Environmental, 1999, 20(2): 155-163. doi: 10.1016/S0926-3373(98)00105-2
|
[14] |
KUDO A, DOMEN K, MARUYA K, et al. Reduction of nitrate ions into nitrite and ammonia over some photocatalysts[J]. Journal of Catalysis, 1992, 135(1): 300-303. doi: 10.1016/0021-9517(92)90287-R
|
[15] |
ZHANG F X, JIN R C, CHEN J X, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters[J]. Journal of Catalysis, 2005, 232(2): 424-431. doi: 10.1016/j.jcat.2005.04.014
|
[16] |
GE X H, FU W Z, WANG Y J, et al. Removal of nitrate nitrogen from water by phosphotungstate-supported TiO2 photocatalytic method[J]. Environmental Science and Pollution Research, 2020, 27(32): 40475-40482 doi: 10.1007/s11356-020-09947-y
|
[17] |
ZHANG H J, LIU Z H, LI Y, et al. Intimately coupled TiO2/g-C3N4 photocatalysts and in-situ cultivated biofilms enhanced nitrate reduction in water[J]. Applied Surface Science, 2020, 503: 144092. doi: 10.1016/j.apsusc.2019.144092
|
[18] |
ZHENG R, LI C H, HUANG K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1195-1207. doi: 10.1039/D1QI01614H
|
[19] |
LI X, WANG S, AN H Z, et al. Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism[J]. Applied Surface Science, 2021, 539: 148257. doi: 10.1016/j.apsusc.2020.148257
|
[20] |
HOU Z A, CHEN F F, WANG J N, et al. Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity[J]. Applied Catalysis B: Environmental, 2018, 232: 124-134. doi: 10.1016/j.apcatb.2018.03.055
|
[21] |
SILVEIRA J E, RIBEIRO A R, CARBAJO J, et al. The photocatalytic reduction of NO3− to N2 with ilmenite (FeTiO3): Effects of groundwater matrix[J]. Water Research, 2021, 200: 117250. doi: 10.1016/j.watres.2021.117250
|
[22] |
官海汕, 李帅, 许伟城, 等. 铁基双金属催化剂耦合过一硫酸盐去除污染物的研究进展[J]. 环境化学, 2024, 43(11): 1-13. doi: 10.7524/j.issn.0254-6108.2023052202
GUAN H S, LI S, XU W C, et al. Research progress on the coupling of iron based bimetallic catalysts with peroxymonosulfate for pollutants removal[J]. Environmental Chemistry, 2024, 43(11): 1-13 (in Chinese). doi: 10.7524/j.issn.0254-6108.2023052202
|
[23] |
LI Z Y, ZHAO Y J, GUAN Q, et al. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen[J]. Applied Surface Science, 2020, 508: 145225. doi: 10.1016/j.apsusc.2019.145225
|
[24] |
YANG X H, WANG R, WANG S, et al. Sequential active-site switches in integrated Cu/Fe-TiO2 for efficient electroreduction from nitrate into ammonia[J]. Applied Catalysis B: Environmental, 2023, 325: 122360. doi: 10.1016/j.apcatb.2023.122360
|
[25] |
WANG N, WANG J, LIU M N, et al. Preparation of Ag@CuFe2O4@TiO2 nanocomposite films and its performance of photoelectrochemical cathodic protection[J]. Journal of Materials Science & Technology, 2022, 100: 12-19.
|
[26] |
韩术鑫, 王利红, 李剑, 等. 东营市化工聚集区地下水TOC污染空间分布特性[J]. 中国环境监测, 2018, 34(4): 85-94.
HAN S X, WANG L H, LI J, et al. Study on the spatial distribution characteristics of TOC pollution for groundwater in Dongying chemical industry gathering area[J]. Environmental Monitoring in China, 2018, 34(4): 85-94 (in Chinese).
|
[27] |
GAO S T, LIU W H, SHANG N Z, et al. Integration of a plasmonic semiconductor with a metal–organic framework: A case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity[J]. RSC Advances, 2014, 4(106): 61736-61742. doi: 10.1039/C4RA11364K
|
[28] |
XIAO Q, WANG T, YU S L, et al. Influence of UV lamp, sulfur(IV) concentration, and pH on bromate degradation in UV/sulfite systems: Mechanisms and applications[J]. Water Research, 2017, 111: 288-296. doi: 10.1016/j.watres.2017.01.018
|
[29] |
SOLANO R, MAESTRE D, MUESES M, et al. TiO2-CuO heterojunction nanoparticles synthesized by green chemistry supported on beach sand granules: Optical, morphological and structural characterization[J]. Nano-Structures & Nano-Objects, 2023, 35: 101024.
|
[30] |
ZHANG H, ZHOU Y, LIU S Q, et al. Molecular-level understanding of selectively photocatalytic degradation of ammonia via copper ferrite/N-doped graphene catalyst under visible near-infrared irradiation[J]. Catalysts, 2018, 8(10): 405. doi: 10.3390/catal8100405
|
[31] |
ZHANG X Y, DING Y B, TANG H Q, et al. Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236: 251-262. doi: 10.1016/j.cej.2013.09.051
|
[32] |
YU J G, RAN J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy & Environmental Science, 2011, 4(4): 1364-1371.
|
[33] |
IVANOVA T M, MASLAKOV K I, SIDOROV A A, et al. XPS detection of unusual Cu(Ⅱ) to Cu(I) transition on the surface of complexes with redox-active ligands[J]. Journal of Electron Spectroscopy and Related Phenomena, 2020, 238: 146878. doi: 10.1016/j.elspec.2019.06.010
|
[34] |
LU L R, AI Z H, LI J P, et al. Synthesis and characterization of Fe-Fe2O3 core-shell nanowires and nanonecklaces[J]. Crystal Growth & Design, 2007, 7(2): 459-464.
|
[35] |
FAN G D, ZHENG X M, LUO J, et al. Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light[J]. Chemical Engineering Journal, 2018, 351: 782-790. doi: 10.1016/j.cej.2018.06.119
|
[36] |
UDDIN M R, KHAN M R, RAHMAN M W, et al. Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(2): 589-604. doi: 10.1007/s11144-015-0911-7
|