[1] |
荣健, 刘展. 先进核能技术发展与展望[J]. 原子能科学技术, 2020, 54(9): 1638-1643. doi: 10.7538/yzk.2020.youxian.0348
RONG J, LIU Z. Development and prospect of advanced nuclear energy technology[J]. Atomic Energy Science and Technology, 2020, 54(9): 1638-1643 (in Chinese). doi: 10.7538/yzk.2020.youxian.0348
|
[2] |
白宇. 加大核电发展力度 推广核能供暖综合利用[J]. 中国电力报, 中国电力报, 2023,3(7): 1.
BAI Y. Strengthen the development of nuclear power and Promote the comprehensive utilization of nuclear heating [J]. China Electric Power News, China Electric Power News, 2023,3(7): 1(in Chinese).
|
[3] |
高彦锋, 石西森, 吕钢. 我国核电放射性废物及其处置现状分析[J]. 中国核电, 2020, 13(6): 774-778.
GAO Y F, SHI X S, LV G, et al. Analysis on the current situation of radioactive waste disposal of nuclear power plant in China[J]. China Nuclear Power, 2020, 13(6): 774-778 (in Chinese).
|
[4] |
BURGER A, LICHTSCHEIDL I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation[J]. The Science of the Total Environment, 2018, 618: 1459-1485.
|
[5] |
BURGER A, LICHTSCHEIDL I. Strontium in the environment: Review about reactions of plants towards stable and radioactive strontium isotopes[J]. The Science of the Total Environment, 2019, 653: 1458-1512. doi: 10.1016/j.scitotenv.2018.10.312
|
[6] |
RUMP A, EDER S, HERMANN C, et al. Estimation of radiation-induced health hazards from a “dirty bomb” attack with radiocesium under different assault and rescue conditions[J]. Military Medical Research, 2021, 8(1): 65. doi: 10.1186/s40779-021-00349-w
|
[7] |
XU D, ZUO R, HAN, et al. Sorption of Sr in granite under typical colloidal action[J]. Journal of Contaminant Hydrology, 2020, 233: 103659. doi: 10.1016/j.jconhyd.2020.103659
|
[8] |
TELFEYAN K, REIMUS P W, BOUKHALFA H, et al. Aging effects on Cesium-137 (137Cs) sorption and transport in association with clay colloids[J]. Journal of Colloid and Interface Science, 2020, 566: 316-326. doi: 10.1016/j.jcis.2020.01.033
|
[9] |
张高展. 侵蚀性离子作用下矿渣-水泥复合浆体C-S-H微结构形成与演变机理[D]. 武汉: 武汉理工大学, 2016.
ZHANG G Z. The microstructure formation and evolution mechanism of C-S-H gel in Portland cement pastes with granulated blast furnace slag under the attack of corrosive ions[D]. Wuhan: Wuhan University of Technology, 2016 (in Chinese).
|
[10] |
HONG Z J, ZUO J P, LIU C, et al. Hydration and microstructure of nano-clay cement material in ion erosion solution[J]. Materials Letters, 2019, 252: 27-30. doi: 10.1016/j.matlet.2019.05.085
|
[11] |
ZUNINO F, BOEHM-COURJAULT E, SCRIVENER K, et al. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination[J]. Materials and Structures, 2020, 53(2): 44. doi: 10.1617/s11527-020-01478-9
|
[12] |
LANDRY C, TREMBLAY L. Compositional differences between size classes of dissolved organic matter from freshwater and seawater revealed by an HPLC-FTIR system[J]. Environmental Science & Technology, 2012, 46(3): 1700-1707.
|
[13] |
李永强, 巴明芳, 柳俊哲, 等. 干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J]. 复合材料学报, 2017, 34(12): 2856-2865.
LI Y Q, BA M F, LIU J Z, et al. Resistance to chloride erosion of cement matrix composite materials under dry-wet cycling and their micro-structural changes[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2856-2865 (in Chinese).
|
[14] |
WAMBA A G N, LIMA E C, NDI S K, et al. Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: Preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions[J]. Environmental Science and Pollution Research, 2017, 24(27): 21807-21820. doi: 10.1007/s11356-017-9825-4
|
[15] |
徐天宇, 周志军, 李博, 等. 盐碱区桥梁墩柱混凝土表层离子扩散规律研究[J]. 铁道科学与工程学报, 2024: 1–13.
XU T Y, ZHOU Z J, LI B, et al. Study on ion diffusion law of concrete Surface layer of bridge pier column in Saline-alkali region [J]. Journal of Railway Science and Engineering,2024 : 1-13 (in Chinese).
|
[16] |
吴福飞,侍克斌,董双快,等.硫酸盐镁盐复合侵蚀后混凝土的微观形貌特征[J].农业工程学报, 2015, 31(9):7.
FUFEI W, KEBIN S, SHUANGKUAI D, et al. Microstructure characteristics of concrete after erosion of magnesium salts and sulfates[J]. Chinese Society of Agricultural Engineering , 2015, 31(9):7(in Chinese).
|
[17] |
王展飞, 朱静. Cl− 浓度对MgSO4溶液侵蚀混凝土的损伤影响[J]. 江苏建材, 2024(1): 23-25.
WANG Z F, ZHU J. The effect of Cl− concentration on the damage of MgSO4 solution erosion concrete[J]. Jiangsu Building Materials, 2024(1): 23-25 (in Chinese).
|
[18] |
CHEN Z, WU L Y, BINDIGANAVILE V, et al. Coupled models to describe the combined diffusion-reaction behaviour of chloride and sulphate ions in cement-based systems[J]. Construction and Building Materials, 2020, 243: 118232. doi: 10.1016/j.conbuildmat.2020.118232
|
[19] |
A C L Z , A W K C , C S M , et al. Numerical investigation of external sulfate attack and its effect on chloride binding and diffusion in concrete[J]. Construction and Building Materials, 2021,285: 122806.
|
[20] |
CAO Y Z, GUO L P, CHEN B, et al. Influence of sulfate on the chloride diffusion mechanism in mortar[J]. Construction and Building Materials, 2019, 197: 398-405. doi: 10.1016/j.conbuildmat.2018.11.238
|
[21] |
FAGERLUND G. Determination of specific surface by the BET method[J]. Matériaux et Construction, 1973, 6(3): 239-245.
|
[22] |
CHEN Y, LIU P, YU Z W, et al. Study on degradation of macro performances and micro structure of concrete attacked by sulfate under artificial simulated environment[J]. Construction and Building Materials, 2020, 260: 119951. doi: 10.1016/j.conbuildmat.2020.119951
|
[23] |
袁奎. 氯盐-硫酸盐侵蚀下氯离子在混凝土中的扩散规律研究[D]. 沈阳: 沈阳工业大学, 2023.
YUAN K. Study on the diffusion pattern of chloride ions in coagulation under chloride salt-sulfate erosion[D]. Shenyang: Shenyang University of Technology, 2023 (in Chinese).
|
[24] |
ZHU J P, KUO Y, GUAN X M, et al. Microstructure of cementitious materials under the coupling effects of Cl− and Mg2+ in a marine tidal environment[J]. SSRN Electronic Journal, 2023, 376: 131003.
|
[25] |
KASHYAP K, KHAN F, VERMA D K, et al. Effective removal of uranium from aqueous solution by using cerium oxide nanoparticles derived from Citrus limon peel extract[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(7): 2435-2445. doi: 10.1007/s10967-021-08138-4
|
[26] |
KANG S, LEE J, PARK S M, et al. Adsorption characteristics of cesium onto calcium-silicate-hydrate in concrete powder and block[J]. Chemosphere, 2020, 259: 127494. doi: 10.1016/j.chemosphere.2020.127494
|
[27] |
YANG G, WANG Y, YANG X, et al. Study of the Cs-137 adsorption performance of ion-eroded cement[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022,331:3773-3784.
|
[28] |
YANG G, WANG Y H, YANG X Y, et al. Preparation of C30 concrete and its adsorption performance for Cs(I)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(5): 2135-2145. doi: 10.1007/s10967-022-08273-6
|