[1] |
YANG Q, GAO Y, KE J, et al. Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods[J]. Bioengineered, 2021, 12(1): 7376-7416. doi: 10.1080/21655979.2021.1974657
|
[2] |
THAI V A, DANG V D, THUY N T, et al. Fluoroquinolones: Fate, effects on the environment and selected removal methods[J]. Journal of Cleaner Production, 2023, 418: 137762. doi: 10.1016/j.jclepro.2023.137762
|
[3] |
CUPRYS A, PULICHARLA R, BRAR S K, et al. , Fluoroquinolones metal complexation and its environmental impacts[J]. Coordination Chemistry Reviews, 2018, 376: 46-61. doi: 10.1016/j.ccr.2018.05.019
|
[4] |
REDGRAVE L S, SUTTON S B, WEBBER M A, et al. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success[J]. Trends Microbiol, 2014, 22(8): 438-445. doi: 10.1016/j.tim.2014.04.007
|
[5] |
BEN W, ZHU B, YUAN X, et al. Occurrence, removal and risk of organic micropollutants in wastewater treatment plants across China: Comparison of wastewater treatment processes[J]. Water Research, 2018, 130: 38-46. doi: 10.1016/j.watres.2017.11.057
|
[6] |
YAO L, WANG Y, TONG L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135: 236-242. doi: 10.1016/j.ecoenv.2016.10.006
|
[7] |
CONKLE J L, LATTAO C, WHITE J R, et al. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil[J]. Chemosphere, 2010, 80(11): 1353-1359. doi: 10.1016/j.chemosphere.2010.06.012
|
[8] |
ALEXANDER J T, HAI F I, AL-ABOUD T M. Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential[J]. Journal of Environmental Management, 2012, 111: 195-207.
|
[9] |
NASROLLAHI N, Vatanpour V, KHATAEE A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements [J]. Science of the Total Environment, 2022, 838(Pt 1): 156010.
|
[10] |
JIANG Y, RAN J, MAO K, et al. Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments[J]. Ecotoxicolgy and Environmental Safety, 2022, 236: 113464. doi: 10.1016/j.ecoenv.2022.113464
|
[11] |
AHMED M B, ZHOU J L, NGO H H, et al. Adsorptive removal of antibiotics from water and wastewater: Progress and challenges[J]. Science of the Total Environment, 2015, 532: 112-126. doi: 10.1016/j.scitotenv.2015.05.130
|
[12] |
GANESAMOORTHY R, VADIVEL V K, KUMAR R, et al. Aerogels for water treatment: A review[J]. Journal of Cleaner Production, 2021, 329: 129713. doi: 10.1016/j.jclepro.2021.129713
|
[13] |
LI N, GAO B, YANG R, et al. Simple fabrication of carboxymethyl cellulose and κ-carrageenan composite aerogel with efficient performance in removal of fluoroquinolone antibiotics from water[J]. Frontiers of Environmental Science and Engineering, 2022, 16(10): 133. doi: 10.1007/s11783-022-1568-x
|
[14] |
JIA J, XU F, LONG Z, et al. Metal-organic framework MIL-53(Fe) for highly selective and ultrasensitive direct sensing of MeHg+[J]. Chemical Communications, 2013, 49(41): 4670-4672. doi: 10.1039/c3cc40821c
|
[15] |
SALGUEIRO A M, DANIEL-DA-SILVA A L, GIRAO A V, et al. Unusual dye adsorption behavior of κ-carrageenan coated superparamagnetic nanoparticles[J]. Chemical Engineering Journal, 2013, 229: 276-284. doi: 10.1016/j.cej.2013.06.015
|
[16] |
LI X, GUO W L, LIU Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136. doi: 10.1016/j.apsusc.2016.02.037
|
[17] |
MA X, XIONG Y, LIU Y S, et al. When MOFs meet wood: From opportunities toward applications[J]. Chemistry, 2022, 8(9): 2342-2361. doi: 10.1016/j.chempr.2022.06.016
|
[18] |
SHAO B, HAN Z, PANG R, et al. The crystalline structure transition and hydrogen bonds shift determining enhanced enzymatic digestibility of cellulose treated by ultrasonication[J]. Science of the Total Environment, 2023, 876: 162631. doi: 10.1016/j.scitotenv.2023.162631
|
[19] |
LIU J, HAO D D, SUN H W, et al. Integration of MIL-101-NH2 into cellulosic foams for efficient Cr(VI) reduction under visible light[J]. Industrial and Engineering Chemistry Research, 2021, 60(33): 12220-12227. doi: 10.1021/acs.iecr.1c01777
|
[20] |
ABDPOUR S, KOWSARI E, MOGHADDAM M R A. Synthesis of MIL-100(Fe)@MIL-53(Fe) as a novel hybrid photocatalyst and evaluation photocatalytic and photoelectrochemical performance under visible light irradiation[J]. Journal of Solid State Chemistry, 2018, 262: 172-180. doi: 10.1016/j.jssc.2018.03.018
|
[21] |
AMALY N, PANDEY P, EL-MOGHAZY A Y, et al. Cationic microcrystalline cellulose-Montmorillonite composite aerogel for preconcentration of inorganic anions from dairy wastewater[J]. Talanta, 2022, 242: 123281. doi: 10.1016/j.talanta.2022.123281
|
[22] |
REN W, GAO J K, LEI C, et al. Recyclable metal-organic framework/cellulose aerogels for activating peroxymonosulfate to degrade organic pollutants[J]. Chemical Engineering Journal, 2018, 349: 766-774. doi: 10.1016/j.cej.2018.05.143
|
[23] |
SUN G, LIANG T Q, TAN W Y, et al. Rheological behaviors and physical properties of plasticized hydrogel films developed from κ-carrageenan incorporating hydroxypropyl methylcellulose[J]. Food Hydrocolloids, 2018, 85: 61-68. doi: 10.1016/j.foodhyd.2018.07.002
|
[24] |
YUAN Z, CHEN Y L, QIU C P, et al. Simple ultrasonic integration of shapeable, rebuildable, and multifunctional MIL-53(Fe)@cellulose composite for remediation of aqueous contaminants[J]. International Journal of Biological Macromolecules, 2023, 249: 126118. doi: 10.1016/j.ijbiomac.2023.126118
|
[25] |
KONG Y, ZHUANG Y, HAN K, et al. Enhanced tetracycline adsorption using alginate-graphene-ZIF67 aerogel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 588: 124360. doi: 10.1016/j.colsurfa.2019.124360
|
[26] |
CHONG S, THIELE G, KIM J. Excavating hidden adsorption sites in metal-organic frameworks using rational defect engineering[J]. Nature Communications, 2017, 8(1): 1539. doi: 10.1038/s41467-017-01478-4
|
[27] |
DONG D, GUO H, LI G, et al. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells[J]. Nano Energy, 2017, 39: 470-477. doi: 10.1016/j.nanoen.2017.07.029
|
[28] |
MEADOR M A, MALOW E J, SILVA R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials and Interfaces, 2012, 4(2): 536-544. doi: 10.1021/am2014635
|
[29] |
ZHANG Z, CHEN X Y, TAN Y, et al. Preparation of millimeter-scale MIL-53(Fe)@ polyethersulfone balls to optimize photo-Fenton process[J]. Chemical Engineering Journal, 2022, 441: 135881. doi: 10.1016/j.cej.2022.135881
|
[30] |
AWAD A M, SHAIKH S M R, JALAB R, et al. Adsorption of organic pollutants by natural and modified clays: A comprehensive review[J]. Separation and Purification Technology, 2019, 228: 115719. doi: 10.1016/j.seppur.2019.115719
|
[31] |
WU Q, LI Z, HONG H, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite[J]. Applied Clay Science, 2010, 50: 204-211. doi: 10.1016/j.clay.2010.08.001
|
[32] |
常慊慊, 高博强, 刘波, 等. 单宁酸-钛复合吸附剂的制备及其对氟喹诺酮类抗生素的吸附去除研究[J]. 环境化学, 2022, 41(7): 2180-2192. doi: 10.7524/j.issn.0254-6108.2022012005
CHANG Q Q, GAO B Q, LIU B, et al. Preparation of tannic acid-titanium composite adsorbent and its adsorption performance and mechanisms in removal of fluoroquinolone antibiotics[J]. Environmental Chemistry, 2022, 41(7): 2180-2192(in Chinese). doi: 10.7524/j.issn.0254-6108.2022012005
|
[33] |
BEIRANVAND M, FARHADI S, MOHAMMADI-GHOLAMI A. Adsorptive removal of tetracycline and ciprofloxacin drugs from water by using a magnetic rod-like hydroxyapatite and MIL-101(Fe) metal-organic framework nanocomposite[J]. RSC Advances, 2022, 12: 34438-34453. doi: 10.1039/D2RA06213E
|
[34] |
GHANI A A, DEVARAYAPALLI K C, KIM B, et al. Sodium-alginate-laden MXene and MOF systems and their composite hydrogel beads for batch and fixed-bed adsorption of naproxen with electrochemical regeneration[J]. Carbohydrate Polymers, 2023, 318: 121098. doi: 10.1016/j.carbpol.2023.121098
|
[35] |
WANG Y, XIONG Y, WANG J, et al. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 903-913. doi: 10.1016/j.colsurfa.2017.02.050
|
[36] |
HO Y S, MCKAY G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2): 115-124. doi: 10.1016/S0923-0467(98)00076-1
|
[37] |
LAGERGREN S. About the theory of so-called sorption of soluble substances[J]. Kungliga Svenska Vetenskapsakademiens Handlingar, 1989, 24: 1-39.
|
[38] |
LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. doi: 10.1021/ja02242a004
|
[39] |
FREUNDLICH H M F. Over the adsorption in solution[J]. Journal of Physical Chemistry, 1906, 57: 385-470.
|
[40] |
CHATTERJEE A, JANA A K, BASU J K. Silica supported binary metal organic framework for removing organic dye involving combined effect of adsorption followed by photocatalytic degradation[J]. Materials Research Bulletin, 2021, 138: 111227. doi: 10.1016/j.materresbull.2021.111227
|
[41] |
WANG S, XU Y, FU R, et al. Rational construction of hierarchically porous Fe-Co/N-doped carbon/rGO composites for broadband microwave absorption[J]. Nano-micro Letters, 2019, 11(1): 76. doi: 10.1007/s40820-019-0307-8
|
[42] |
LI N, TAO K, XIA W, et al. A novel cellulose/lignin/montmorillonite ternary hybrid aerogel for efficiently adsorptive removal of antibiotics from water[J]. Chemical Engineering Journal, 2023, 466: 143265. doi: 10.1016/j.cej.2023.143265
|
[43] |
GAO B, CHANG Q, CAI J, et al. Removal of fluoroquinolone antibiotics using actinia-shaped lignin-based adsorbents: Role of the length and distribution of branched-chains[J]. Journal of Hazardous Materials, 2021, 403: 123603. doi: 10.1016/j.jhazmat.2020.123603
|
[44] |
TAO K, GAO B, LI N, et al. Efficient adsorption of chloroquine phosphate by a novel sodium alginate/tannic acid double-network hydrogel in a wide pH range[J]. Science of the Total Environment, 2024, 912: 168740. doi: 10.1016/j.scitotenv.2023.168740
|
[45] |
GUO X, KANG C F, HUANG H L, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water[J]. Microporous and Mesoporous Materials, 2019, 286: 84-91. doi: 10.1016/j.micromeso.2019.05.025
|
[46] |
ZHANG H, DANG Q, LIU C, et al. Fabrication of methyl acrylate and tetraethylenepentamine grafted magnetic chitosan microparticles for capture of Cd(II) from aqueous solutions[J]. Joural of Hazardous Materials, 2019, 366: 346-357. doi: 10.1016/j.jhazmat.2018.12.006
|
[47] |
ZHENG Y, THAVORN-AMORNSRI T, PEREIRA M F R, et al. Kapok fiber oriented-polyaniline nanofibers for efficient Cr(VI) removal[J]. Chemical Engineering Journal, 2012, 191: 154-161. doi: 10.1016/j.cej.2012.02.088
|
[48] |
MA J, JIANG Z, CAO J, et al. Coadsorption behavior and mechanism of ciprofloxacin and Cu(II) on graphene hydrogel wetted surface[J]. Chemical Engineering Journal, 2020, 380: 122387. doi: 10.1016/j.cej.2019.122387
|
[49] |
YANG Z, XU X, LEI C, et al. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016, 198: 112-123. doi: 10.1016/j.apcatb.2016.05.041
|
[50] |
GAO Y, LI Y, ZHANG L, et al. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide[J]. Journal of Colloid and Interface Science, 2012, 368: 540-546. doi: 10.1016/j.jcis.2011.11.015
|
[51] |
YANG T, YU D, WANG D, et al. Accelerating Fe(Ⅲ)/Fe(Ⅱ) cycle via Fe(Ⅱ) substitution for enhancing Fenton-like performance of Fe-MOFs[J]. Applied Catalysis B: Environmental, 2021, 286: 119859. doi: 10.1016/j.apcatb.2020.119859
|